
1. (a) The angular wave number is 12 2 3.49m .
1.80m

k −π π= = =
λ

(b) The speed of the wave is ( )( )1.80m 110rad s
31.5m s.

2 2
v f ωλ= λ = = =

π π



2. The distance d between the beetle and the scorpion is related to the transverse speed tv
and longitudinal speed v  as 

t td v t v t= =

where tt  and t  are the  arrival times of the wave in the transverse and longitudinal 
directions, respectively. With 50 m/stv =  and 150 m/sv = , we have 

150 m/s 3.0
50 m/s

t

t

t v
t v

= = = .

Thus, if
3 33.0 2.0 4.0 10 s 2.0 10 s ,tt t t t t t t− −Δ = − = − = = × = ×

then 3(150 m/s)(2.0 10 s) 0.30 m 30 cm.d v t −= = × = =



3. (a) The motion from maximum displacement to zero is one-fourth of a cycle so 0.170 s 
is one-fourth of a period. The period is T = 4(0.170 s) = 0.680 s. 

(b) The frequency is the reciprocal of the period: 

1 1 1.47 Hz.
0.680s

f
T

= = =

(c) A sinusoidal wave travels one wavelength in one period: 

1.40m 2.06m s.
0.680s

v
T

= = =λ



853 seats 21.87 seats/s 22 seats/s
39 s

v = = ≈ .

(b) The width w is equal to the distance the wave has moved during the average time 
required by a spectator to stand and then sit. Thus, 

(21.87 seats/s)(1.8 s) 39 seatsw vt= = ≈ .

4. (a) The speed of the wave is the distance divided by the required time. Thus,  



5. Let  y1 = 2.0 mm (corresponding to time t1) and y2 = –2.0 mm (corresponding to time 
t2).  Then we find

kx + 600t1  + φ = sin−1(2.0/6.0)
and

kx + 600t2  + φ = sin−1(–2.0/6.0)  . 

Subtracting equations gives

600(t1 – t2)  =  sin−1(2.0/6.0) – sin−1(–2.0/6.0).

Thus we find t1 – t2 = 0.011 s  (or  1.1 ms). 



6. Setting x = 0  in u = −ω ym cos(k x − ω t + φ) (see Eq. 16-21 or Eq. 16-28) gives 

u = −ω ym cos(−ω t+φ)

as the function being plotted in the graph.  We note that it has a positive “slope” 
(referring to its t-derivative) at t = 0: 

d u
d t  = d (−ω ym cos(−ω t+ φ))

d t = − ym ω² sin(−ω t + φ)   > 0  at t = 0.

This implies that – sinφ > 0 and consequently that φ is in either the third or fourth 
quadrant. The graph shows (at t = 0)  u = −4 m/s, and (at some later t) umax = 5 m/s.  We 
note that umax  = ym ω. Therefore, 

u = − umax cos(− ω t + φ)|t = 0 φ =  cos−1( 4
5 ) = ± 0.6435 rad

(bear in mind that cosθ = cos(−θ )), and we must choose  φ = −0.64 rad  (since this is 
about  −37° and is in fourth quadrant).  Of course, this answer added to 2nπ is still a valid 
answer (where n is any integer), so that, for example, φ = −0.64 + 2π = 5.64 rad  is also 
an acceptable result. 



7. Using v = fλ, we find the length of one cycle of the wave is

λ = 350/500 = 0.700 m = 700 mm. 

From f = 1/T, we find the time for one cycle of oscillation is T = 1/500 = 2.00 × 10–3 s = 
2.00 ms. 

(a) A cycle is equivalent to 2π radians, so that π/3 rad corresponds to one-sixth of a cycle. 
The corresponding length, therefore, is λ/6 = 700/6 = 117 mm. 

(b) The interval 1.00 ms is half of T and thus corresponds to half of one cycle, or half of 
2π rad. Thus, the phase difference is (1/2)2π = π rad. 



8. (a) The amplitude is ym = 6.0 cm. 

(b) We find λ from 2π/λ = 0.020π: λ = 1.0×102 cm. 

(c) Solving 2πf = ω = 4.0π, we obtain f = 2.0 Hz. 

(d) The wave speed is v = λf = (100 cm) (2.0 Hz) = 2.0×102 cm/s. 

(e) The wave propagates in the –x direction, since the argument of the trig function is kx
+ ωt instead of kx – ωt (as in Eq. 16-2). 

(f) The maximum transverse speed (found from the time derivative of y) is 

( ) ( )1
max 2 4.0 s 6.0cm 75cm s.mu fy −= π = π =

(g) y(3.5 cm, 0.26 s) = (6.0 cm) sin[0.020π(3.5) + 4.0π(0.26)] = –2.0 cm. 



(f) The function describing the wave can be written as 

( )0.040sin 5 400y x t φ= − +

where distances are in meters and time is in seconds. We adjust the phase constant φ to 
satisfy the condition y = 0.040 at x = t = 0. Therefore, sin φ = 1, for which the “simplest” 
root is φ = π/2. Consequently, the answer is 

0.040sin 5 400 .
2

y x t π= − +

(g) The sign in front of ω is minus. 

9. (a) Recalling from Ch. 12 the simple harmonic motion relation um = ymω, we have 

16 400rad/s.
0.040

ω = =

Since ω = 2πf, we obtain f = 64 Hz. 

(b) Using v = fλ, we find λ = 80/64 = 1.26 m 1.3 m≈ .

(c) The amplitude of the transverse displacement is 24.0 cm 4.0 10 m.my −= = ×

(d) The wave number is k = 2π/λ = 5.0 rad/m. 

(e) The angular frequency, as obtained in part (a), is 216 / 0.040 4.0 10 rad/s.ω = = ×



10. With length in centimeters and time in seconds, we have 

u = du
dt   = 225π sin (πx − 15πt) . 

Squaring this and adding it to the square of 15πy, we have 

u2 + (15πy)2  =  (225π )2 [sin2 (πx − 15π t) + cos2 (πx − 15π t)]

so that 
u  = (225π)2 - (15πy)2  =  15π 152 - y2   . 

Therefore, where y = 12, u must be ± 135π.  Consequently, the speed there is 424 cm/s = 
4.24 m/s. 



(d) We choose the minus sign (between kx and ωt) in the argument of the sine function 
because the wave is shown traveling to the right [in the +x direction] – see section 16-5).  
Therefore, with SI units understood, we obtain 

y = ym sin(kx −kvt) ≈ 0.0030 sin(16 x  −  2.4 102 t) . 

11. (a) The amplitude ym is half of the 6.00 mm vertical range shown in the figure, i.e., 
3.0 mm.my =

(b) The speed of the wave is v = d/t = 15 m/s, where d = 0.060 m and t = 0.0040 s.  The 
angular wave number is k = 2π/λ where λ  = 0.40 m.  Thus,  

k = 
2π
 λ   =  16 rad/m . 

(c) The angular frequency is found from  

ω = k v = (16 rad/m)(15 m/s)=2.4 102 rad/s. 



12. The slope that they are plotting is the physical slope of sinusoidal waveshape (not to 
be confused with the more abstract “slope” of its time development; the physical slope is 
an x-derivative whereas the more abstract “slope” would be the t-derivative).  Thus, 
where the figure shows a maximum slope equal to 0.2 (with no unit), it refers to the 
maximum of the following function: 

d y
d x  = d ym sin(k x − ω t)

d x  = ym k cos(k x − ω t) .

The problem additionally gives t = 0, which we can substitute into the above expression 
if desired.  In any case, the maximum of the above expression is  ym k ,  where 

2 2 15.7 rad/m
0.40 m

k π π
λ

= = = .

Therefore, setting ym k equal to 0.20 allows us to solve for the amplitude ym .  We find 

0.20 0.0127 m 1.3 cm
15.7 rad/mmy = = ≈ .



(d) The angular frequency is ω = 2π/T = π/5 = 0.63 rad/s.

(e) As found in part (a), the phase is φ π= .

(f) The sign is minus since the wave is traveling in the +x direction. 

(g) Since the frequency is f = 1/T = 0.10 s, the speed of the wave is v = fλ = 2.0 cm/s. 

(h) From the results above, the wave may be expressed as 

( , ) 4.0sin 4.0sin
10 5 10 5

x t x ty x t π π π ππ= − + = − − .

Taking the derivative of y with respect to t, we find 

( , ) 4.0 cos
10 5

y x tu x t
t t

π π∂ π= = −
∂

which yields u(0,5.0) = –2.5 cm/s. 

13. From Eq. 16-10, a general expression for a sinusoidal wave traveling along the +x
direction is
 ( , ) sin( )my x t y kx tω φ= − +

(a) The figure shows that at x = 0, 
(0, ) sin( )my t y tω φ= − + is a positive sine function, i.e., 
(0, ) sin .my t y tω= +  Therefore, the phase constant must 

be φ π= . At t =0, we then have 

( ,0) sin( ) sinm my x y kx y kxπ= + = −

which is a negative sine function. A plot of y(x,0) is 
depicted on the right. 

(b) From the figure we see that the amplitude is ym = 4.0 cm.  

(c) The angular wave number is given by k = 2π/λ = π/10 = 0.31 rad/cm. 



14. From v = τ μ , we have 

new newnew

old old old

2.v
v

τ μ
τ μ

= =



15. The wave speed v is given by v = τ μ , where τ is the tension in the rope and μ is 
the linear mass density of the rope. The linear mass density is the mass per unit length of 
rope:

μ = m/L = (0.0600 kg)/(2.00 m) = 0.0300 kg/m. 
Thus,

500 N 129 m s.
0.0300 kg m

v = =



22
1 1 1

2
2 2 2

4 .
4

d d
d d

μ πρ
μ πρ

= =

Therefore, the ratio of diameters is 

1 1

2 2

3.0 3.2.
0.29

d
d

μ
μ

= = =

16. The volume of a cylinder of height  is V = πr2 = πd2 /4. The strings are long, 
narrow cylinders, one of diameter d1 and the other of diameter d2 (and corresponding 
linear densities μ1 and μ2). The mass is the (regular) density multiplied by the volume: m
= ρV, so that the mass-per-unit length is  

2 24
4

m d dρ ρμ π π= = =

and their ratio is 



17. (a) The amplitude of the wave is ym=0.120 mm. 

(b) The wave speed is given by v = τ μ , where τ is the tension in the string and μ is the 

linear mass density of the string, so the wavelength is λ = v/f = τ μ /f and the angular 
wave number is 

( ) 12 0.50kg m2 2 100 Hz 141m .
10 N

k f −π= = π = π =
λ

μ
τ

(c) The frequency is f = 100 Hz, so the angular frequency is

ω = 2πf = 2π(100 Hz) = 628 rad/s. 

(d) We may write the string displacement in the form y = ym sin(kx + ωt). The plus sign is 
used since the wave is traveling in the negative x direction. In summary, the wave can be 
expressed as 

( ) ( ) ( )1 10.120mm sin 141m  + 628s .y x t− −=



18. We use /v = ∝τ μ τ  to obtain 

( )
2 2

2
2 1

1

180m/s120 N 135N.
170m/s

v
v

= = =τ τ



19. (a) The wave speed is given by v = λ/T = ω/k, where λ is the wavelength, T is the 
period, ω is the angular frequency (2π/T), and k is the angular wave number (2π/λ). The 
displacement has the form y = ym sin(kx + ωt), so k = 2.0 m–1 and ω = 30 rad/s. Thus

v = (30 rad/s)/(2.0 m–1) = 15 m/s. 

(b) Since the wave speed is given by v = τ μ , where τ is the tension in the string and μ
is the linear mass density of the string, the tension is 

( )( )22 41.6 10 kg m 15m s 0.036 N.vτ μ −= = × =



20. (a) Comparing with Eq. 16-2, we see that k = 20/m and ω = 600/s. Therefore, the 
speed of the wave is (see Eq. 16-13) v = ω/k = 30 m/s. 

(b) From Eq. 16–26, we find 

2 2

15 0.017 kg m 17g m.
30v

= = = =τμ



The solution is either 0.93 rad or 2.21 rad. In the first case the function has a positive 
slope at x = 0 and matches the graph. In the second case it has negative slope and does 
not match the graph. We select φ = 0.93 rad.

(i) The string displacement has the form y (x, t) = ym sin(kx + ωt + φ). A plus sign appears 
in the argument of the trigonometric function because the wave is moving in the negative 
x direction. Using the results obtained above, the expression for the displacement is 

( )2 1 1( , ) 5.0 10 m sin (16m ) (190s ) 0.93 .− − −= × + +y x t x t

21. (a) We read the amplitude from the graph. It is about 5.0 cm. 

(b) We read the wavelength from the graph. The curve crosses y = 0 at about x = 15 cm 
and again with the same slope at about x = 55 cm, so  

λ = (55 cm – 15 cm) = 40 cm = 0.40 m. 

(c) The wave speed is / ,v = τ μ  where τ is the tension in the string and μ is the linear 
mass density of the string. Thus, 

3

3.6 N 12 m/s.
25 10 kg/m

v −= =
×

(d) The frequency is f = v/λ = (12 m/s)/(0.40 m) = 30 Hz and the period is  

T = 1/f = 1/(30 Hz) = 0.033 s. 

(e) The maximum string speed is  

um = ωym = 2πfym = 2π(30 Hz) (5.0 cm) = 940 cm/s = 9.4 m/s. 

(f) The angular wave number is k = 2π/λ = 2π/(0.40 m) = 16 m–1.

(g) The angular frequency is ω = 2πf = 2π(30 Hz) = 1.9×102 rad/s 

(h) According to the graph, the displacement at x = 0 and t = 0 is 4.0 × 10–2 m. The 
formula for the displacement gives y(0, 0) = ym sin φ. We wish to select φ so that

5.0 × 10–2 sin φ = 4.0 × 10–2.



22. (a) The general expression for y (x, t) for the wave is y (x, t) = ym sin(kx – ωt), which, 
at x = 10 cm, becomes y (x = 10 cm, t) = ym sin[k(10 cm – ωt)]. Comparing this with the 
expression given, we find ω = 4.0 rad/s, or f = ω/2π = 0.64 Hz. 

(b) Since k(10 cm) = 1.0, the wave number is k = 0.10/cm. Consequently, the wavelength 
is λ = 2π/k = 63 cm. 

(c) The amplitude is 5.0 cm.my =

(d) In part (b), we have shown that the angular wave number is k = 0.10/cm. 

(e) The angular frequency is ω = 4.0 rad/s. 

(f) The sign is minus since the wave is traveling in the +x direction. 

Summarizing the results obtained above by substituting the values of k and ω into the 
general expression for y (x, t), with centimeters and seconds understood, we obtain 

( , ) 5.0sin (0.10 4.0 ).y x t x t= −

(g) Since / / ,v k= =ω τ μ  the tension is 

2 1 2
2

2 1 2
(4.0g / cm)(4.0s ) 6400g cm/s 0.064 N.

(0.10cm )

−

−= = = ⋅ =
k

ω μτ



(250 N)(10.0m) 158m/s.
0.100kg

= = =Lv
m

τ

Here τ is the tension in the wire and L/m is the linear mass density of the wire. The 
coordinate of the meeting point is 

310.0m (158m/s) (30.0 10 s) 7.37 m.
2

x
−+ ×= =

This is the distance from the left end of the wire. The distance from the right end is L – x
= (10.0 m – 7.37 m ) = 2.63 m. 

23. The pulses have the same speed v. Suppose one pulse starts from the left end of the 
wire at time t = 0. Its coordinate at time t is x1 = vt. The other pulse starts from the right 
end, at x = L, where L is the length of the wire, at time t = 30 ms. If this time is denoted 
by t0 then the coordinate of this wave at time t is x2 = L – v(t – t0). They meet when x1 = 
x2, or, what is the same, when vt = L – v(t – t0). We solve for the time they meet: t = (L + 
vt0)/2v and the coordinate of the meeting point is x = vt = (L + vt0)/2. Now, we calculate 
the wave speed: 



24. (a) The tension in each string is given by τ = Mg/2. Thus, the wave speed in string 1 
is

2

1
1 1

(500g) (9.80m/s ) 28.6m/s.
2 2(3.00g/m)
Mgv τ

μ μ
= = = =

(b) And the wave speed in string 2 is 

2

2
2

(500g) (9.80m/s ) 22.1m/s.
2 2(5.00g/m)
Mgv
μ

= = =

(c) Let 1 1 1 2 2 2/(2 ) /(2 )v M g v M g= = =μ μ and M1 + M2 = M. We solve for M1 and 
obtain

1
2 1

500g 187.5g 188g.
1 / 1 5.00 / 3.00

MM
μ μ

= = = ≈
+ +

(d) And we solve for the second mass: M2 = M – M1 = (500 g – 187.5 g) ≈ 313 g. 



25. (a) The wave speed at any point on the rope is given by v = τ μ , where τ is the 
tension at that point and μ is the linear mass density. Because the rope is hanging the 
tension varies from point to point. Consider a point on the rope a distance y from the 
bottom end. The forces acting on it are the weight of the rope below it, pulling down, and 
the tension, pulling up. Since the rope is in equilibrium, these forces balance. The weight 
of the rope below is given by μgy, so the tension is τ = μgy. The wave speed is 

/ .= =v gy gyμ μ

(b) The time dt for the wave to move past a length dy, a distance y from the bottom end, 
is d d dt y v y gy= =  and the total time for the wave to move the entire length of the 
rope is 

0
0

d 2 2 .
L

L y y Lt
g ggy

= = =



26. Using Eq. 16–33 for the average power and Eq. 16–26 for the speed of the wave, we 
solve for f = ω/2π:

avg
3

21 1 2(85.0 W) 198 Hz.
2 2 (7.70 10 m)/ (36.0 N)(0.260kg / 2.70m )m

P
f

y μ τ μ −= = =
π π ×



27. We note from the graph (and from the fact that we are dealing with a cosine-squared, 
see Eq. 16-30) that the wave frequency is f = 1

2 ms = 500 Hz, and that the wavelength λ =
0.20 m.  We also note from the graph that the maximum value of dK/dt is 10 W.  Setting 
this equal to the maximum value of Eq. 16-29 (where we just set that cosine term equal to 
1) we find 

1
2 μ v ω2 ym

2 = 10 

with SI units understood.  Substituting in μ = 0.002 kg/m, ω = 2πf  and v = f λ , we solve 
for the wave amplitude:  

ym = 10
2π2μλ  f 3  =  0.0032 m . 



28. Comparing 1 1( , ) (3.00 mm)sin[(4.00 m ) (7.00 s ) ]y x t x t− −= −  to the general expression 
( , ) sin( )my x t y kx tω= − , we see that 14.00 mk −= and 7.00 rad/sω = . The speed of the 

wave is
1/ (7.00 rad/s)/(4.00 m ) 1.75 m/s.v kω −= = =



29. The wave 1 1 1/ 2( , ) (2.00 mm)[(20 m ) (4.0 s ) ]y x t x t− −= −  is of the form ( )h kx tω− with
angular wave number 120 mk −=  and angular frequency 4.0 rad/sω = . Thus, the speed of 
the wave is

1/ (4.0 rad/s)/(20 m ) 0.20 m/s.v kω −= = =



30. The wave 1 1( , ) (4.00 mm) [(30 m ) (6.0 s ) ]y x t h x t− −= +  is of the form ( )h kx tω− with
angular wave number 130 mk −=  and angular frequency 6.0 rad/sω = . Thus, the speed 
of the wave is

1/ (6.0 rad/s)/(30 m ) 0.20 m/s.v kω −= = =



sin( ) sin( )m my y kx t y kx tω ω φ= − + − + ( ) ( )1 1
2 22 cos sinmy kx tφ ω φ= − + ,

where φ = π/2. The amplitude is  

( )1
22 cosmA y φ= 2 cos( / 4) 1.41m my y= π = .

31. The displacement of the string is given by  



32. (a) Let the phase difference be φ. Then from Eq. 16–52, 2ym cos(φ/2) = 1.50ym, which 
gives

1 1.502cos 82.8 .
2

m

m

y
y

φ −= = °

(b) Converting to radians, we have φ = 1.45 rad. 

(c) In terms of wavelength (the length of each cycle, where each cycle corresponds to 2π
rad), this is equivalent to 1.45 rad/2π = 0.230 wavelength. 



33. (a) The amplitude of the second wave is 9.00 mmmy = , as stated in the problem. 

(b) The figure indicates that λ = 40 cm = 0.40 m, which implies that the angular wave 
number is k = 2π/0.40 = 16  rad/m.    

(c) The figure (along with information in the problem) indicates that the speed of each 
wave is v = dx/t = (56.0 cm)/(8.0 ms) = 70 m/s.  This, in turn, implies that the angular 
frequency is

ω = k v =1100 rad/s = 1.1×103 rad/s. 

(d) The figure depicts two traveling waves (both going in the –x direction) of equal 
amplitude ym.  The amplitude of their resultant wave, as shown in the figure, is y′m = 4.00
mm.  Eq. 16-52 applies: 

y′m = 2 ym cos( 1
2 φ2) φ2 = 2 cos−1(2.00/9.00) = 2.69 rad. 

(e) In making the plus-or-minus sign choice in y = ym sin(k x ± ω t + φ), we recall the 
discussion in section 16-5, where it shown that sinusoidal waves traveling in the –x
direction are of the form y = ym sin(k x + ω t + φ).  Here, φ should be thought of as the 
phase difference between the two waves (that is, φ1 = 0 for wave 1 and φ2 = 2.69 rad for 
wave 2).

In summary, the waves have the forms (with SI units understood): 

y1 = (0.00900)sin(16 x +1100 t)   and y2 = (0.00900)sin(16 x + 1100 t + 2.7 ) . 



34. (a) We use Eq. 16-26 and Eq. 16-33 with μ = 0.00200 kg/m and  ym = 0.00300 m.  
These give v = τ / μ  = 775 m/s and   

Pavg = 12  μv ω2ym
2 = 10 W. 

(b) In this situation, the waves are two separate string (no superposition occurs).  The 
answer is clearly twice that of part (a); P = 20 W. 

(c) Now they are on the same string.  If they are interfering constructively (as in Fig. 16-
16(a)) then the amplitude ym is doubled which means its square ym

2 increases by a factor 
of 4.  Thus, the answer now is four times that of part (a);  P = 40 W. 

(d) Eq. 16-52 indicates in this case that the amplitude (for their superposition) is  
2 ymcos(0.2π) = 1.618 times the original amplitude ym.  Squared, this results in an increase 
in the power by a factor of 2.618.  Thus, P = 26 W in this case. 

(e) Now the situation depicted in Fig. 16-16(b) applies, so P = 0. 



35. The phasor diagram is shown below: y1m and y2m represent the original waves and ym
represents the resultant wave. The phasors corresponding to the two constituent waves 
make an angle of 90° with each other, so the triangle is a right triangle. The Pythagorean 
theorem gives  

2 2 2 2 2 2
1 2 (3.0cm) (4.0cm) (25cm)m m my y y= + = + = .

Thus ym = 5.0 cm. 



(d) In the part (c) situation, the amplitude is (8.0 mm + 5.0 mm) = 13 mm. 

(e) Using phasor terminology, the angle “between them” in this case is π/2 rad (90º), so 
the Pythagorean theorem applies: 

2 2(8.0 mm) (5.0 mm)+  = 9.4 mm . 

36. (a) As shown in Figure 16-16(b) in the textbook, the least-amplitude resultant wave is 
obtained when the phase difference is π rad.

(b) In this case, the amplitude is (8.0 mm – 5.0 mm) = 3.0 mm. 

(c) As shown in Figure 16-16(a) in the textbook, the greatest-amplitude resultant wave is 
obtained when the phase difference is 0 rad. 



37. The phasor diagram is shown on the right. We use the cosine 
theorem: 

2 2 2 2 2
1 2 1 2 1 2 1 22 cos 2 cos .m m m m m m m m my y y y y y y y yθ φ= + − = + +

We solve for cos φ :

2 2 2 2 2 2
1 2

1 2

(9.0mm) (5.0mm) (7.0mm)cos 0.10.
2 2(5.0mm)(7.0mm)

m m m

m m

y y y
y y

φ − − − −= = =

The phase constant is therefore φ = 84°. 



38. We see that  y1 and  y3 cancel (they are 180º) out of phase, and y2 cancels with y4

because their phase difference is also equal to π rad (180º).  There is no resultant wave in 
this case. 



39. (a) Using the phasor technique, we think of these as two “vectors” (the first of 
“length” 4.6 mm and the second of “length” 5.60 mm) separated by an angle of φ = 0.8π
radians (or 144º).  Standard techniques for adding vectors then lead to a resultant vector 
of length 3.29 mm. 

(b) The angle (relative to the first vector) is equal to 88.8º (or 1.55 rad).  

(c) Clearly, it should in “in phase” with the result we just calculated, so its phase angle 
relative to the first phasor should be also 88.8º (or 1.55 rad). 



40. (a) The wave speed is given by 

3
7.00 N 66.1m/s.

2.00  10 kg/1.25m
v −= = =

×
τ
μ

(b) The wavelength of the wave with the lowest resonant frequency f1 is λ1 = 2L, where L
= 125 cm. Thus, 

1
1

66.1 m/s 26.4 Hz.
2(1.25 m)

vf = = =
λ



41. Possible wavelengths are given by λ = 2L/n, where L is the length of the wire and n is 
an integer. The corresponding frequencies are given by f = v/λ = nv/2L, where v is the 
wave speed. The wave speed is given by / ,v L Mτ μ τ= =  where τ is the tension in 
the wire, μ is the linear mass density of the wire, and M is the mass of the wire. μ = M/L
was used to obtain the last form. Thus 

250 N (7.91 Hz).
2 2 2 (10.0 m) (0.100 kg)n
n L n nf n
L M LM

τ τ= = = =

(a) The lowest frequency is 1 7.91 Hz.f =

(b) The second lowest frequency is 2 2(7.91 Hz) 15.8 Hz.f = =

(c) The third lowest frequency is 3 3(7.91 Hz) 23.7 Hz.f = =



42. The nth resonant frequency of string A is 

, ,
2 2

A
n A

A

v nf n
l L

τ
μ

= =

while for string B it is 

, ,
1 .

2 8 4
B

n B n A
B

v nf n f
l L

τ
μ

= = =

(a) Thus, we see f1,A = f4,B. That is, the fourth harmonic of B matches the frequency of A’s
first harmonic. 

(b) Similarly, we find f2,A = f8,B.

(c) No harmonic of B would match 3,
3 3 ,
2 2

A
A

A

vf
l L

τ
μ

= =



43. (a) The wave speed is given by ,v τ μ=  where τ is the tension in the string and μ is 
the linear mass density of the string. Since the mass density is the mass per unit length, μ
= M/L, where M is the mass of the string and L is its length. Thus 

(96.0 N) (8.40 m) 82.0 m/s.
0.120 kg

Lv
M

= = =τ

(b) The longest possible wavelength λ for a standing wave is related to the length of the 
string by L = λ/2, so λ = 2L = 2(8.40 m) = 16.8 m. 

(c) The frequency is f = v/λ = (82.0 m/s)/(16.8 m) = 4.88 Hz. 



44. The string is flat each time the particle passes through its equilibrium position. A 
particle may travel up to its positive amplitude point and back to equilibrium during this 
time. This describes half of one complete cycle, so we conclude T = 2(0.50 s) = 1.0 s. 
Thus, f = 1/T = 1.0 Hz, and the wavelength is 

10cm/s 10 cm.
1.0 Hz

v
f

λ = = =



45. (a) Eq. 16–26 gives the speed of the wave: 

2
3

150 N 144.34 m/s 1.44 10 m/s.
7.20 10 kg/m

v τ
μ −= = = ≈ ×

×

(b) From the figure, we find the wavelength of the standing wave to be  

λ = (2/3)(90.0 cm) = 60.0 cm. 

(c) The frequency is 
21.44 10 m/s 241Hz.

0.600m
vf ×= = =
λ



46. Use Eq. 16–66 (for the resonant frequencies) and Eq. 16–26 ( / )v τ μ=  to find fn:

2 2n
nv nf
L L

τ
μ

= =

which gives f3 = (3/2L) iτ μ .

(a) When τf = 4τi, we get the new frequency 

3 3
3 2 .

2
ff f

L
τ

= =′
μ

(b) And we get the new wavelength 3 3
3

2 .
3

v L
f
′′λ = = = λ
′



with n + 1. That is, f1 = nv/2L is the lower frequency and f2 = (n + 1)v/2L is the higher. 
The ratio of the frequencies is 

2

1

1.f n
f n

+=

The solution for n is 
1

2 1

315 Hz 3.
420 Hz 315 Hz

fn
f f

= = =
− −

The lowest possible resonant frequency is f = v/2L = f1/n = (315 Hz)/3 = 105 Hz. 

(b) The longest possible wavelength is λ = 2L. If f is the lowest possible frequency then

v = λf = 2Lf = 2(0.75 m)(105 Hz) = 158 m/s. 

47. (a) The resonant wavelengths are given by λ = 2L/n, where L is the length of the 
string and n is an integer, and the resonant frequencies are given by f = v/λ = nv/2L,
where v is the wave speed. Suppose the lower frequency is associated with the integer n.
Then, since there are no resonant frequencies between, the higher frequency is associated 



48. Using Eq. 16-26, we find the wave speed to be

665.2 10 N 4412m/s.
3.35kg/ m

v τ
μ

×= = =

The corresponding resonant frequencies are 

, 1, 2,3,
2 2n
nv nf n
L L

τ
μ

= = =

(a) The wavelength of the wave with the lowest (fundamental) resonant frequency f1 is λ1
= 2L, where L = 347 m. Thus, 

1
1

4412 m/s 6.36 Hz.
2(347 m)

vf = = =
λ

(b) The frequency difference between successive modes is  

1
4412 m/s 6.36 Hz.

2 2(347 m)n n
vf f f
L−Δ = − = = =



49. The harmonics are integer multiples of the fundamental, which implies that the 
difference between any successive pair of the harmonic frequencies is equal to the 
fundamental frequency.   Thus, f1 = (390 Hz – 325 Hz) = 65 Hz.  This further implies that 
the next higher resonance above 195 Hz should be (195 Hz + 65 Hz) = 260 Hz. 



and = vL f
L

λ = .

(a) Comparing the given function with Eq. 16-60, we obtain k = π/2 and ω = 12π rad/s. 
Since k = 2π/λ then 

2 4.0m 4.0m.
2

Lπ π= λ = =
λ

(b) Since ω = 2πf then 2 12  rad/s,fπ = π  which yields 

 6.0Hz       24m/s.f v f= = λ =

(c) Using Eq. 16–26, we have 
200 N    24 m/s
/(4.0 m)

v
m

τ
μ

= =

which leads to m = 1.4 kg. 

(d) With 
3 3(24 m/s) 9.0Hz
2 2(4.0 m)

vf
L

= = =

The period is T = 1/f = 0.11 s. 

50. Since the rope is fixed at both ends, then the phrase “second-harmonic standing wave 
pattern” describes the oscillation shown in Figure 16–23(b), where (see Eq. 16–65) 



51. (a) The amplitude of each of the traveling waves is half the maximum displacement 
of the string when the standing wave is present, or 0.25 cm. 

(b) Each traveling wave has an angular frequency of ω = 40π rad/s and an angular wave 
number of k = π/3 cm–1. The wave speed is

v = ω/k = (40π rad/s)/(π/3 cm–1) = 1.2×102 cm/s. 

(c) The distance between nodes is half a wavelength: d = λ/2 = π/k = π/(π/3 cm–1) = 3.0 
cm. Here 2π/k was substituted for λ.

(d) The string speed is given by u(x, t) = ∂y/∂t = –ωymsin(kx)sin(ωt). For the given 
coordinate and time, 

( )1 1 9(40  rad/s) (0.50cm) sin cm (1.5cm) sin  40 s s 0.
3 8

u − −π= − π π =



52. The nodes are located from vanishing of the spatial factor sin 5πx = 0 for which the 
solutions are 

1 2 35 0, ,2 ,3 , 0, , , ,
5 5 5

x xπ = π π π =

(a) The smallest value of x which corresponds to a node is x = 0. 

(b) The second smallest value of x which corresponds to a node is x = 0.20 m. 

(c) The third smallest value of x which corresponds to a node is x = 0.40 m. 

(d) Every point (except at a node) is in simple harmonic motion of frequency f = ω/2π = 
40π/2π = 20 Hz. Therefore, the period of oscillation is T = 1/f = 0.050 s. 

(e) Comparing the given function with Eq. 16–58 through Eq. 16–60, we obtain 

1 20.020sin(5 40 ) and 0.020sin(5 40 )y x t y x t= π − π = π + π

for the two traveling waves. Thus, we infer from these that the speed is v = ω/k = 40π/5π
= 8.0 m/s. 

(f) And we see the amplitude is ym = 0.020 m. 

(g) The derivative of the given function with respect to time is 

(0.040)(40 )sin(5 )sin(40 )yu x t
t

∂= = − π π π
∂

which vanishes (for all x) at times such as sin(40πt) = 0. Thus, 

1 2 340 0, ,2 ,3 , 0, , , ,
40 40 40

t tπ = π π π =

Thus, the first time in which all points on the string have zero transverse velocity is when  
t = 0 s. 

(h) The second time in which all points on the string have zero transverse velocity is 
when t = 1/40 s = 0.025 s. 

(i) The third time in which all points on the string have zero transverse velocity is when  
t = 2/40 s = 0.050 s. 



y1 = ym sin(kx – ωt), y2 = ym sin(kx + ωt).

The amplitude ym is half the maximum displacement of the standing wave, or 5.0 × 10–3

m. 

(b) Since the standing wave has three loops, the string is three half-wavelengths long: L = 
3λ/2, or λ = 2L/3. With L = 3.0m, λ = 2.0 m. The angular wave number is  

k = 2π/λ = 2π/(2.0 m) = 3.1 m–1.

(c) If v is the wave speed, then the frequency is 

( )
( )

3 100m s3 50 Hz.
2 2 3.0m

v vf
L

= = = =
λ

The angular frequency is the same as that of the standing wave, or  

ω = 2π f = 2π(50 Hz) = 314 rad/s. 

(d) The two waves are 

( ) ( ) ( )3 1 1
1 5.0 10 m sin 3.14 m 314sy x t− − −= × −

and
( ) ( ) ( )3 1 1

2 5.0 10 m sin 3.14 m 314s .y x t− − −= × +

Thus, if one of the waves has the form ( , ) sin( )my x t y kx tω= + , then the other wave must 
have the form '( , ) sin( )my x t y kx tω= − . The sign in front of ω for '( , )y x t is minus. 

53. (a) The waves have the same amplitude, the same angular frequency, and the same 
angular wave number, but they travel in opposite directions. We take them to be  



(c) We take the derivative with respect to time and obtain, at t = 0.50 s and x = 0.20 m, 

( ) ( )0.04 cos cos 0dyu kx t
dt

ω ω= = − = .

 d) The above equation yields u = –0.13 m/s at t = 1.0 s. 

(e) The sketch of this function at t = 0.50 s for 0 ≤ x ≤ 0.40 m is shown below: 

54. From the x = 0 plot (and the requirement of an anti-node at x = 0), we infer a standing 
wave function of the form ( , ) (0.04)cos( )sin( ),y x t kx tω= − where 2 /  rad/sTω π π= = ,
with length in meters and time in seconds. The parameter k is determined by the 
existence of the node at x = 0.10 (presumably the first node that one encounters as one 
moves from the origin in the positive x direction). This implies k(0.10) = π/2 so that k = 
5π rad/m. 

(a) With the parameters determined as discussed above and t = 0.50 s, we find 

(0.20 m, 0.50 s) 0.04cos( )sin( ) 0.040m .y kx tω= − =

(b) The above equation yields (0.30 m, 0.50 s) 0.04cos( )sin( ) 0 .y kx tω= − =



Nodes occur where cos(kx) = 0 or kx = nπ + π/2, where n is an integer (including zero). 
Since k = 1.0π m–1, this means ( )1

2 (1.00 m)x n= + . Thus, the smallest value of x which 
corresponds to a node is x = 0.500 m (n=0).

(e) The second smallest value of x which corresponds to a node is x = 1.50 m (n=1).

(f) The third smallest value of x which corresponds to a node is x = 2.50 m (n=2).

(g) The displacement is a maximum where cos(kx) = ±1. This means kx = nπ, where n is 
an integer. Thus, x = n(1.00 m). The smallest value of x which corresponds to an anti-
node (maximum) is x = 0 (n=0).

(h) The second smallest value of x which corresponds to an anti-node (maximum) is 
1.00 mx = (n=1).

(i) The third smallest value of x which corresponds to an anti-node (maximum) is 
2.00 mx = (n=2).

55. (a) The angular frequency is ω = 8.00π/2 = 4.00π rad/s, so the frequency is

f = ω/2π = (4.00π rad/s)/2π = 2.00 Hz. 

(b) The angular wave number is k = 2.00π/2 = 1.00π m–1, so the wavelength is

λ = 2π/k = 2π/(1.00π m–1) = 2.00 m. 

(c) The wave speed is 

(2.00m)(2.00Hz) = 4.00 m/s.v f= λ =

(d) We need to add two cosine functions. First convert them to sine functions using cos α
= sin (α + π/2), then apply

cos cos sin sin 2sin cos
2 2 2 2

2cos cos
2 2

π π + + π ++ = + + + =

+ −=

α β α βα β α β

α β α β

Letting α = kx and β = ωt, we find 

cos( ) cos( ) 2 cos( )cos( ).m m my kx t y kx t y kx tω ω ω+ + − =



56. Reference to point A as an anti-node suggests that this is a standing wave pattern and 
thus that the waves are traveling in opposite directions.  Thus, we expect one of them to 
be of the form y = ym sin(kx + ωt) and the other to be of the form y = ym sin(kx – ωt).

(a) Using Eq. 16-60, we conclude that ym = 12 (9.0 mm) = 4.5 mm, due to the fact that the 

amplitude of the standing wave is  12 (1.80 cm) = 0.90 cm = 9.0 mm.   

(b) Since one full cycle of the wave (one wavelength) is 40 cm,  k = 2π/λ ≈ 16 m−1.

(c) The problem tells us that the time of half a full period of motion is 6.0 ms, so T = 12 
ms and Eq. 16-5 gives ω = 5.2 ×102 rad/s.

(d) The two waves are therefore

                                y1(x, t) = (4.5 mm) sin[(16 m−1)x + (520 s−1)t]
and

y2(x, t) = (4.5 mm) sin[(16 m−1)x – (520 s−1)t] . 

If one wave has the form ( , ) sin( )my x t y kx tω= + as in y1, then the other wave must be of 
the form '( , ) sin( )my x t y kx tω= − as in y2. Therefore, the sign in front of ω is minus. 



The anti-node moves through 12 cm in simple harmonic motion, just as a mass on a 
vertical spring would move from its upper turning point to its lower turning point – 
which occurs during a half-period.  Since the period T is related to the angular frequency 
by Eq. 15-5, we have 

T = 2π
ω  = 2π

4.00 π = 0.500 s .

Thus, in a time of t = 12 T = 0.250 s, the wave moves a distance Δx = vt  where the speed 

of the wave is v = ω
k = 1.00 m/s.  Therefore, Δx = (1.00 m/s)(0.250 s) = 0.250 m. 

57. Recalling the discussion in section 16-12, we observe that this problem presents us 
with a standing wave condition with amplitude 12 cm.  The angular wave number and 
frequency are noted by comparing the given waves with the form y = ym sin(k x ± ω t).



58. With the string fixed on both ends, using Eq. 16-66 and Eq. 16-26, the resonant 
frequencies can be written as 

, 1, 2,3,
2 2 2
nv n n mgf n
L L L

τ
μ μ

= = = =

(a) The mass that allows the oscillator to set up the 4th harmonic ( 4n = ) on the string is

2 2 2 2

2 2 2
4

4 4(1.20 m) (120 Hz) (0.00160 kg/m) 0.846 kg
(4) (9.80 m/s )n

L fm
n g

μ
=

= = =

(b) If the mass of the block is 1.00 kgm = , the corresponding n is

2 2 2 2

2

4 4(1.20 m) (120 Hz) (0.00160 kg/m) 3.68
9.80 m/s

L fn
g

μ= = =

which is not an integer. Therefore, the mass cannot set up a standing wave on the string. 



μ1 = ρ1AL1/L1 = ρ1A

and 1 1/ .Aν τ ρ=  A similar expression holds for the wave speed in the steel section: 

2 2/ .v Aτ ρ=  We note that the cross-sectional area and the tension are the same for the 
two sections. The equality of the frequencies for the two sections now leads to 

1 1 1 2 2 2/ / ,n L n Lρ ρ=  where A has been canceled from both sides. The ratio of the 
integers is 

( )
( )

3 3
2 22

3 3
1 1 1

0.866 m 7.80 10 kg/m
2.50.

0.600 m 2.60 10 kg/m

Ln
n L

ρ
ρ

×
= = =

×

The smallest integers that have this ratio are n1 = 2 and n2 = 5. The frequency is 

( )1 1 1 1 1 1/ 2 / 2 / .f n v L n L Aτ ρ= =

The tension is provided by the hanging block and is τ  = mg, where m is the mass of the 
block. Thus, 

( )
( )( )

( )( )
2

1
3 3 6 2

1 1

10.0 kg 9.80 m/s2 324 Hz.
2 2 0.600 m 2.60 10 kg/m 1.00 10 m
n mgf
L Aρ −

= = =
× ×

(b) The standing wave pattern has two loops in the aluminum section and five loops in 
the steel section, or seven loops in all. There are eight nodes, counting the end points. 

59. (a) The frequency of the wave is the same for both sections of the wire. The wave 
speed and wavelength, however, are both different in different sections. Suppose there 
are n1 loops in the aluminum section of the wire. Then,  

L1 = n1λ1/2 = n1v1/2f,

where λ1 is the wavelength and v1 is the wave speed in that section. In this consideration, 
we have substituted λ1 = v1/f, where f is the frequency. Thus f = n1v1/2L1. A similar 
expression holds for the steel section: f = n2v2/2L2. Since the frequency is the same for the 
two sections, n1v1/L1 = n2v2/L2. Now the wave speed in the aluminum section is given 
by 1 1/ ,ν τ μ=  where μ1 is the linear mass density of the aluminum wire. The mass of 
aluminum in the wire is given by m1 = ρ1AL1, where ρ1 is the mass density (mass per unit 
volume) for aluminum and A is the cross-sectional area of the wire. Thus



Therefore,  447
286.1  – 1 = 0.5624  must equal an odd integer (2n + 1) divided by a squared 

integer (n2).  That is, multiplying 0.5624 by a square (such as 1, 4, 9, 16, etc) should give 
us a number very close (within experimental uncertainty) to an odd number (1, 3, 5, …).  
Trying this out in succession (starting with multiplication by 1, then by 4, …), we find 
that multiplication by 16 gives a value very close to 9; we conclude n = 4 (so n2 = 16 and 
2n + 1 = 9).  Plugging m = 0.447 kg, n = 4, and the other values given in the problem, we 
find

μ = 0.000845 kg/m = 0.845 g/m. 

60. With the string fixed on both ends, using Eq. 16-66 and Eq. 16-26, the resonant 
frequencies can be written as 

, 1, 2,3,
2 2 2
nv n n mgf n
L L L

τ
μ μ

= = = =

The mass that allows the oscillator to set up the nth harmonic on the string is  

2 2

2

4L fm
n g

μ= .

Thus, we see that the block mass is inversely proportional to the harmonic number 
squared.  Thus, if the 447 gram block corresponds to harmonic number n then 

447
286.1  = 

(n + 1)2

 n2   =
n2 + 2n + 1

 n2    =   1 + 
2n + 1

 n2   . 



61. (a) The phasor diagram is shown here: y1, y2, and y3 represent the original waves and 
ym represents the resultant wave.

The horizontal component of the resultant is ymh = y1 – y3 = y1 – y1/3 = 2y1/3. The vertical 
component is ymv = y2 = y1/2. The amplitude of the resultant is 

2 2
2 2 1 1

1 1
2 5 0.83 .
3 2 6m mh mv
y yy y y y y= + = + = =

(b) The phase constant for the resultant is 

1 1 11

1

2 3tan tan tan 0.644 rad 37 .
2 3 4

mv

mh

y y
y y

φ − − −= = = = = °

(c) The resultant wave is 

1
5 sin ( 0.644 rad).
6

y y kx tω= − +

The graph below shows the wave at time t = 0. As time goes on it moves to the right with 
speed v = ω/k.



62. Setting x = 0  in  y = ym sin(k x − ω t + φ) gives y = ym sin(−ω t + φ) as the function 
being plotted in the graph.  We note that it has a positive “slope” (referring to its t-
derivative) at t = 0: 

d y
d t   = 

d ym sin(−ω t+ φ)
d t  = – ymω cos(−ω t+ φ)   > 0  at t = 0.

This implies that  – cos(φ) > 0 and consequently that φ is in either the second or third 
quadrant. The graph shows (at t = 0) y = 2.00 mm, and (at some later t) ym = 6.00 mm.  
Therefore,

y = ym sin(−ω t + φ)|t = 0 φ = sin−1( 1
3 ) =  0.34 rad   or   2.8 rad 

 (bear in mind that sin(θ) = sin(π − θ)), and we must choose  φ = 2.8 rad  because this is 
about 161° and is in second quadrant. Of course, this answer added to 2nπ is still a valid 
answer (where n is any integer), so that, for example,  φ = 2.8 – 2π = −3.48 rad  is also an 
acceptable result. 



63. We compare the resultant wave given with the standard expression (Eq. 16–52) to 
obtain ( )1 1

220m 2 / ,2 cos 3.0mmmk y−= = π λ =φ , and 1
2 0.820rad=φ .

(a) Therefore, λ = 2π/k = 0.31 m. 

(b) The phase difference is φ = 1.64 rad. 

(c) And the amplitude is ym = 2.2 mm. 



d ay
d t  = d (–ω²ym sin(−ω t+ φ))

d t  = ym ω3 cos(− ω t + φ)   < 0  at t = 0.

This implies that  cosφ < 0 and consequently that φ is in either the second or third 
quadrant. The graph shows (at t = 0)  ay  = −100 m/s², and (at another t) amax = 400 m/s².  
Therefore,

ay = −amax sin(−ω t + φ)|t = 0 φ =  sin−1( 1
4 ) =  0.25 rad   or   2.9 rad 

(bear in mind that sinθ = sin(π − θ)), and we must choose φ = 2.9 rad  because this is 
about 166° and is in the second quadrant.  Of course, this answer added to 2nπ is still a 
valid answer (where n is any integer), so that, for example, φ = 2.9 – 2π = −3.4 rad  is 
also an acceptable result. 

64. Setting x = 0  in  ay = –ω² y (see the solution to part (b) of Sample Problem 16-2) 
where y = ym sin(k x − ω t + φ) gives ay = –ω² ym sin(−ω t + φ) as the function being 
plotted in the graph.  We note that it has a negative “slope” (referring to its t-derivative)
at t = 0: 



65. We note that  
dy/dt = −ωcos(kx – ωt + φ),

which we will refer to as u(x,t). so that the ratio of the function y(x,t) divided by u(x,t)
is – tan(kx − ωt + φ)/ω.  With the given information (for x = 0 and t = 0) then we can take 
the inverse tangent of this ratio to solve for the phase constant: 

φ = tan−1 -ω y(0,0)
 u(0,0)

 = tan−1 -(440)(0.0045)
-0.75 = 1.2 rad. 



(d) The leading edge of the pulse reaches x = 10 cm at t = (10 – 4.0)/5 = 1.2 s. The 
particle (say, of the string that carries the pulse) at that location reaches a maximum 
displacement h = 2 cm at t = (10 – 3.0)/5 = 1.4 s. Finally, the trailing edge of the pulse 
departs from x = 10 cm at t = (10 – 1.0)/5 = 1.8 s. Thus, we find for h(t) at x = 10 cm 
(with the horizontal axis, t, in seconds): 

66. (a) Recalling the discussion in §16-5, we see that the speed of the wave given by a 
function with argument x – 5.0t (where x is in centimeters and t is in seconds) must be 
5.0 cm/s .

(b) In part (c), we show several “snapshots” of the wave: the one on the left is as shown 
in Figure 16–48 (at t = 0), the middle one is at t = 1.0 s, and the rightmost one is at 

2.0 st = . It is clear that the wave is traveling to the right (the +x direction). 

(c) The third picture in the sequence below shows the pulse at 2.0 s. The horizontal scale 
(and, presumably, the vertical one also) is in centimeters. 



67. (a) The displacement of the string is assumed to have the form y(x, t) =
ym sin (kx – ωt). The velocity of a point on the string is

u(x, t) = ∂y/∂t = –ω ym cos(kx – ωt)

and its maximum value is um = ωym. For this wave the frequency is f = 120 Hz and the 
angular frequency is ω = 2πf = 2π (120 Hz) = 754 rad/s. Since the bar moves through a 
distance of 1.00 cm, the amplitude is half of that, or ym = 5.00 × 10–3 m. The maximum 
speed is

um = (754 rad/s) (5.00 × 10–3 m) = 3.77 m/s. 

(b) Consider the string at coordinate x and at time t and suppose it makes the angle θ with 
the x axis. The tension is along the string and makes the same angle with the x axis. Its 
transverse component is τtrans = τ sin θ. Now θ is given by tan θ = ∂y/∂x = kym cos(kx – ωt)
and its maximum value is given by tan θm = kym. We must calculate the angular wave 
number k. It is given by k = ω/v, where v is the wave speed. The wave speed is given by 

/ ,v τ μ=  where τ is the tension in the rope and μ is the linear mass density of the rope. 
Using the data given, 

90.0 N 27.4 m/s
0.120kg/m

= =v

and
1754 rad/s 27.5m .

27.4 m/s
k −= =

Thus,
1 3tan (27.5m )(5.00 10 m) 0.138− −= × =mθ

and θ = 7.83°. The maximum value of the transverse component of the tension in the 
string is

τtrans = (90.0 N) sin 7.83° = 12.3 N. 

We note that sin θ is nearly the same as tan θ because θ is small. We can approximate the 
maximum value of the transverse component of the tension by τkym.

(c) We consider the string at x. The transverse component of the tension pulling on it due 
to the string to the left is –τ(∂y/∂x) = –τkym cos(kx – ωt) and it reaches its maximum value 
when cos(kx – ωt) = –1. The wave speed is

u = ∂y/∂t = –ωym cos (kx – ωt)

and it also reaches its maximum value when cos(kx – ωt) = –1. The two quantities reach 
their maximum values at the same value of the phase. When cos(kx – ωt) = –1 the value 
of sin(kx – ωt) is zero and the displacement of the string is y = 0. 



(d) When the string at any point moves through a small displacement Δy, the tension does 
work ΔW = τtrans Δy. The rate at which it does work is 

trans trans .W yP u
t t

τ τΔ Δ= = =
Δ Δ

P has its maximum value when the transverse component τtrans of the tension and the 
string speed u have their maximum values. Hence the maximum power is (12.3 N)(3.77 
m/s) = 46.4 W. 

(e) As shown above y = 0 when the transverse component of the tension and the string 
speed have their maximum values. 

(f) The power transferred is zero when the transverse component of the tension and the 
string speed are zero. 

(g) P = 0 when cos(kx – ωt) = 0 and sin(kx – ωt) = ±1 at that time. The string 
displacement is y = ±ym = ±0.50 cm. 



(c) Since f = 120 Hz, ω = 2πf  = 754 rad/s 27.5 10  rad/s.≈ ×

(d) The sign in front of ω is minus since the waves are traveling in the +x direction. 

The results may be summarized as y = (3.0 mm) sin[(31.4 m−1)x – (754 s−1)t]] (this 
applies to each wave when they are in phase).

68. We use Eq. 16-52 in interpreting the figure.   

(a) Since y’= 6.0 mm when φ = 0, then Eq. 16-52 can be used to determine ym = 3.0 mm.   

(b) We note that y’= 0 when the shift distance is 10 cm; this occurs because cos(φ/2) = 0 
there φ = π rad  or ½ cycle.  Since a full cycle corresponds to a distance of one full 
wavelength, this ½ cycle shift corresponds to a distance of λ/2.  Therefore, λ = 20 cm  
k = 2π/λ = 31 m−1.



69. (a) We take the form of the displacement to be y (x, t) = ym sin(kx – ωt). The speed of 
a point on the cord is

u(x, t) = ∂y/∂t = –ωym cos(kx – ωt),

and its maximum value is um = ωym. The wave speed, on the other hand, is given by v = 
λ/T = ω/k. The ratio is 

2 .
/

m m m
m

u y yky
v k

π= = =
λ

ω
ω

(b) The ratio of the speeds depends only on the ratio of the amplitude to the wavelength. 
Different waves on different cords have the same ratio of speeds if they have the same 
amplitude and wavelength, regardless of the wave speeds, linear densities of the cords, 
and the tensions in the cords. 



(f) The speed of the wave is 

2510 rad s 40m s.
62.8rad/m

v
T k

ωλ= = = =

70. We write the expression for the displacement in the form y (x, t) = ym sin(kx – ωt).

(a) The amplitude is ym = 2.0 cm = 0.020 m, as given in the problem. 

(b) The angular wave number k is k = 2π/λ = 2π/(0.10 m) = 63 m–1

(c) The angular frequency is ω = 2πf = 2π(400 Hz) = 2510 rad/s = 2.5×103 rad/s. 

(d) A minus sign is used before the ωt term in the argument of the sine function because 
the wave is traveling in the positive x direction.

Using the results above, the wave may be written as 

( ) ( ) ( ) ( )( )1 1, 2.00cm sin 62.8m 2510s .y x t x t− −= −

(e) The (transverse) speed of a point on the cord is given by taking the derivative of y:

( ) ( ), cosm
yu x t y kx t
t

∂= = − −
∂

ω ω

which leads to a maximum speed of um = ωym = (2510 rad/s)(0.020 m) = 50 m/s. 



71. (a) The amplitude is ym = 1.00 cm = 0.0100 m, as given in the problem. 

(b) Since the frequency is f = 550 Hz, the angular frequency is ω = 2πf = 3.46×103 rad/s. 

(c) The angular wave number is 3/ (3.46 10  rad/s) /(330 m/s) 10.5 rad/mk vω= = × = .

(d) Since the wave is traveling in the –x direction, the sign in front of ω is plus and the 
argument of the trig function is kx + ωt.

The results may be summarized as 

( ) ( )

( ) ( )

m m

3

, sin sin 2

0.010m sin 2 550Hz
330m s

            (0.010m) sin[(10.5 rad/s) (3.46 10  rad/s) ].

xy x t y kx t y f t
v

x t

x t

ω π

π

= + = +

= +

= + ×



72. We orient one phasor along the x axis with length 3.0 mm and angle 0 and the other at 
70° (in the first quadrant) with length 5.0 mm. Adding the components, we obtain 

( )(3.0  mm) (5.0  mm)cos 70 4.71mm along axis
(5.0 mm)sin (70 ) 4.70 mm  along axis.

x
y

+ ° =
° =

(a) Thus, amplitude of the resultant wave is 2 2(4.71 mm) (4.70 mm) 6.7 mm.+ =

(b) And the angle (phase constant) is tan–1 (4.70/4.71) = 45°. 



73. (a) Using v = fλ, we obtain 

240m/s 75 Hz.
3.2 m

f = =

(b) Since frequency is the reciprocal of the period, we find 

1 1 0.0133s 13ms.
75Hz

T
f

= = = ≈



74. By Eq. 16–66, the higher frequencies are integer multiples of the lowest (the 
fundamental).  

(a) The frequency of the second harmonic is f2 = 2(440) = 880 Hz. 

(b) The frequency of the third harmonic is and f3 = 3(440) = 1320 Hz.



75. We make use of Eq. 16–65 with L = 120 cm.  

(a) The longest wavelength for waves traveling on the string  if standing waves are to be 
set up is 1 2 /1 240 cm.Lλ = =

(b) The second longest wavelength for waves traveling on the string  if standing waves 
are to be set up is 2 2 / 2 120 cm.Lλ = =

(c) The third longest wavelength for waves traveling on the string  if standing waves are 
to be set up is 3 2 / 3 80.0 cm.Lλ = =

The three standing waves are shown below: 



76. (a) At x = 2.3 m and t = 0.16 s the displacement is 

( ) ( ) ( )[ ]( , ) 0.15sin 0.79 2.3 13 0.16 m = 0.039 m.y x t = − −

(b) We choose ym = 0.15 m, so that there would be nodes (where the wave amplitude is 
zero) in the string as a result. 

(c) The second wave must be traveling with the same speed and frequency. This implies 
10.79 mk −= ,

(d) and 13 rad/sω = .

(e) The wave must be traveling in –x direction, implying a plus sign in front of ω.

Thus, its general form is y´ (x,t) = (0.15 m)sin(0.79x + 13t).

(f) The displacement of the standing wave at x = 2.3 m and t = 0.16 s is 

( , ) 0.039 m (0.15m)sin[(0.79)(2.3) 13(0.16)] 0.14 m.y x t = − + + = −



77. (a) The wave speed is 

3
120 N 144 m/s.

8.70 10 kg /1.50m−= = =
×

v τ
μ

(b) For the one-loop standing wave we have λ1 = 2L = 2(1.50 m) = 3.00 m.  

(c) For the two-loop standing wave λ2 = L = 1.50 m. 

(d) The frequency for the one-loop wave is f1 = v/λ1 = (144 m/s)/(3.00 m) = 48.0 Hz. 

(e) The frequency for the two-loop wave is f2 = v/λ2 = (144 m/s)/(1.50 m) = 96.0 Hz. 



78. We use 2 2 2 21
2 .mP y vf f= ∝ ∝μνω τ

(a) If the tension is quadrupled, then 2 1
2 1 1 1

1 1

4 2 .P P P P= = =τ τ
τ τ

(b) If the frequency is halved, then 
2 2

2 1
2 1 1 1

1 1

/ 2 1 .
4

f fP P P P
f f

= = =



79. We use Eq. 16-2, Eq. 16-5, Eq. 16-9, Eq. 16-13, and take the derivative to obtain the 
transverse speed u.

(a) The amplitude is ym = 2.0 mm. 

(b) Since ω = 600 rad/s, the frequency is found to be f = 600/2π ≈ 95 Hz. 

(c) Since k = 20 rad/m, the velocity of the wave is v = ω/k = 600/20 = 30 m/s in the +x
direction.

(d) The wavelength is λ = 2π/k ≈ 0.31 m, or 31 cm. 

(e) We obtain 

cos( )m m m
dyu y kx t u y
dt

ω ω ω= = − − =

so that the maximum transverse speed is um = (600)(2.0) = 1200 mm/s, or 1.2 m/s. 



80. (a) Since the string has four loops its length must be two wavelengths. That is, λ = 
L/2, where λ is the wavelength and L is the length of the string. The wavelength is related 
to the frequency f and wave speed v by λ = v/f, so L/2 = v/f and

L = 2v/f = 2(400 m/s)/(600 Hz) = 1.3 m. 

(b) We write the expression for the string displacement in the form y = ym sin(kx) cos(ωt),
where ym is the maximum displacement, k is the angular wave number, and ω is the 
angular frequency. The angular wave number is  

k = 2π/λ = 2πf/v = 2π(600 Hz)/(400 m/s) = 9.4m–1

and the angular frequency is

ω = 2πf = 2π(600 Hz) = 3800 rad/s. 

With ym = 2.0 mm, the displacement is given by 

1 1( , ) (2.0mm)sin[(9.4m ) ]cos[(3800s ) ].y x t x t− −=



81. To oscillate in four loops means n = 4 in Eq. 16-65 (treating both ends of the string as 
effectively “fixed”). Thus, λ = 2(0.90 m)/4 = 0.45 m. Therefore, the speed of the wave is 
v = fλ = 27 m/s. The mass-per-unit-length is  

μ = m/L = (0.044 kg)/(0.90 m) = 0.049 kg/m. 

Thus, using Eq. 16-26, we obtain the tension:

τ = v2 μ = (27 m/s)2(0.049 kg/m) = 36 N. 



82. (a) This distance is determined by the longitudinal speed: 

( ) ( )6 22000m/s 40 10 s 8.0 10 m.d tν − −= = × = ×

(b) Assuming the acceleration is constant (justified by the near-straightness of the curve a
= 300/40 × 10–6) we find the stopping distance d:

( ) ( )
( )

2 6
2 2

300 40 10
2

2 300o ad dν ν
−×

= + =

which gives d = 6.0×10–3 m. This and the radius r form the legs of a right triangle (where 
r is opposite from θ = 60°). Therefore, 

2tan 60 tan 60 1.0 10 m.r r d
d

−° = = ° = ×



83. (a) Let the cross-sectional area of the wire be A and the density of steel be ρ. The 
tensile stress is given by τ/A where τ is the tension in the wire. Also, μ = ρA. Thus, 

8 2
2max max

max 3

7.00 10 N m     3.00 10 m s
7800kg m

Av τ τ
μ ρ

×= = = = ×

(b) The result does not depend on  the diameter of the wire. 



84. (a) Let the displacements of the wave at (y,t) be z(y,t). Then

z(y,t) = zm sin(ky – ωt),

where zm = 3.0 mm, k = 60 cm–1, and ω = 2π/T = 2π/0.20 s = 10π s–1. Thus 

( ) ( )1 1( , ) (3.0mm)sin 60cm 10 s .z y t y t− −= − π

(b) The maximum transverse speed is (2 / 0.20s)(3.0mm)=94 mm/s.m mu z= = πω



85. (a) With length in centimeters and time in seconds, we have 

60 cos 4 .
8

dy xu t
dt

π= = − π − π

Thus, when x = 6 and 1
4t = , we obtain 

6060 cos 133
4 2

u −π − π= − π = = −

so that the speed there is 1.33 m/s. 

(b) The numerical coefficient of the cosine in the expression for u is –60π. Thus, the 
maximum speed is 1.88 m/s. 

(c) Taking another derivative, 
2240 sin 4

8
du xa t
dt

π= = − π − π

so that when x = 6 and t = 1
4  we obtain a = –240π2 sin(−π/4) which yields a = 16.7 m/s2.

(d) The numerical coefficient of the sine in the expression for a is –240π2. Thus, the 
maximum acceleration is 23.7 m/s2.



86. Repeating the steps of Eq. 16-47 → Eq. 16-53, but applying 

cos cos 2cos cos
2 2

α β α βα β + −+ =

(see Appendix E) instead of Eq. 16-50, we obtain [0.10cos ]cos4y x t′ = π π , with SI units 
understood.

(a) For non-negative x, the smallest value to produce cos πx = 0 is x = 1/2, so the answer 
is x = 0.50 m. 

(b) Taking the derivative, 

[ ]( )0.10cos 4 sin 4dyu x t
dt

′′ = = π − π π

We observe that the last factor is zero when 31 1
4 2 40, , , ,t =  Thus, the value of the first 

time the particle at x=0 has zero velocity is t = 0. 

(c) Using the result obtained in (b), the second time where the velocity at x =0 vanishes 
would be t = 0.25 s, 

(d) and the third time is t = 0.50 s. 



87. (a)  From the frequency information, we find ω = 2πf = 10π rad/s.  A point on the 
rope undergoing simple harmonic motion (discussed in Chapter 15) has maximum speed 
as it passes through its "middle" point, which is equal to ymω.  Thus, 

5.0 m/s = ymω ym = 0.16 m   . 

(b) Because of the oscillation being in the fundamental mode (as illustrated in Fig. 16-
23(a) in the textbook), we have λ = 2L = 4.0 m.  Therefore, the speed of waves along the 
rope is v = fλ = 20 m/s.  Then, with μ = m/L = 0.60 kg/m, Eq. 16-26 leads to 

v =
τ
μ τ = μ v2 = 240 N 22.4 10 N≈ × .

(c) We note that for the fundamental, k = 2π/λ = π/L, and we observe that the anti-node 
having zero displacement at t = 0 suggests the use of sine instead of cosine for the simple 
harmonic motion factor.  Now, if the fundamental mode is the only one present (so the 
amplitude calculated in part (a) is indeed the amplitude of the fundamental wave pattern) 
then we have 

y =  (0.16 m) sin 
πx
2  sin (10πt) 1(0.16 m)sin[(1.57 m ) ]sin[(31.4 rad/s) ]x t−=



88. (a) The frequency is f = 1/T = 1/4 Hz, so v = fλ = 5.0 cm/s. 

(b) We refer to the graph to see that the maximum transverse speed (which we will refer 
to as um) is 5.0 cm/s. Recalling from Ch. 11 the simple harmonic motion relation um = 
ymω = ym2πf, we have 

15.0 2      3.2 cm.
4m my y= π =

(c) As already noted, f = 0.25 Hz. 

(d) Since k = 2π/λ, we have k = 10π rad/m. There must be a sign difference between the t
and x terms in the argument in order for the wave to travel to the right. The figure shows 
that at x = 0, the transverse velocity function is 0.050 sin / 2tπ . Therefore, the function 
u(x,t) is 

( , ) 0.050sin 10
2

u x t t xπ= − π

with lengths in meters and time in seconds. Integrating this with respect to time yields 

( )2 0.050
( , ) cos 10

2
y x t t x Cπ= − − π +

π

where C is an integration constant (which we will assume to be zero). The sketch of this 
function at t = 2.0 s for 0 ≤ x ≤ 0.20 m is shown below. 



( ) .
/( )

Δ Δ + Δ= = =
+ Δ

F k kv
m mμ

(b) The time required is 

2 ( ) 2 ( ) 2 1 .
( ) /

mt
v kk m

π + Δ π + Δ= = = π +
ΔΔ + Δ

Thus if / 1Δ , then / 1/ ;t ∝ Δ ∝ Δ  and if / 1Δ , then 
2 / const.t m kπ =

89. (a) The wave speed is 



y1b as the remaining traveling wave. Since the argument of y1b involves the subtraction 
kx – ωt, then y1b travels in the +x direction. 

(c) If y2 (which travels in the –x direction, which for simplicity will be called “leftward”) 
had the larger amplitude, then the system would consist of a standing wave plus a 
leftward moving wave. A simple way to obtain such a situation would be to interchange 
the amplitudes of the given waves. 

(d) Examining carefully the vertical axes, the graphs above certainly suggest that the 
largest amplitude of oscillation is ymax = 4.0 mm and occurs at x = λ/4 = 62.6 mm.  

(e) The smallest amplitude of oscillation is ymin = 1.0 mm and occurs at x = 0 and at x = 
λ/2 = 125 mm. 

(f) The largest amplitude can be related to the amplitudes of y1 and y2 in a simple way: 
ymax = y1m + y2m, where y1m = 2.5 mm and y2m = 1.5 mm are the amplitudes of the original 
traveling waves. 

(g) The smallest amplitudes is ymin = y1m – y2m, where y1m = 2.5 mm and y2m = 1.5 mm are 
the amplitudes of the original traveling waves. 

90. (a) The wave number for each wave is k = 25.1/m, which means λ = 2π/k = 250.3 mm. 
The angular frequency is ω = 440/s; therefore, the period is T = 2π/ω = 14.3 ms. We plot 
the superposition of the two waves y = y1 + y2 over the time interval 0 ≤ t ≤ 15 ms. The 
first two graphs below show the oscillatory behavior at x = 0 (the graph on the left) and at 
x = λ/8 ≈ 31 mm. The time unit is understood to be the millisecond and vertical axis (y) is 
in millimeters. 

The following three graphs show the oscillation at x = λ/4 =62.6 mm ≈ 63 mm (graph on 
the left), at x = 3λ/8 ≈ 94 mm (middle graph), and at x = λ/2 ≈ 125 mm. 

(b) We can think of wave y1 as being made of two smaller waves going in the same 
direction, a wave y1a of amplitude 1.50 mm (the same as y2) and a wave y1b of amplitude 
1.00 mm. It is made clear in §16-12 that two equal-magnitude oppositely-moving waves 
form a standing wave pattern. Thus, waves y1a and y2 form a standing wave, which leaves 



91. Using Eq. 16-50, we have 

' 0.60cos sin 5 200
6 6

y x tπ π= π − π +

with length in meters and time in seconds (see Eq. 16-55 for comparison). 

(a) The amplitude is seen to be 

0.60cos 0.3 3 0.52 m.
6
π = =

(b) Since k = 5π and ω  = 200π, then (using Eq. 16-12) 40m/s.v
k

= =ω

(c) k = 2π/λ leads to λ = 0.40 m. 



8
14

max 9
min

3.0 10 m s 7.5 10 Hz.
400 10 m

cf −

×= = = ×
λ ×

(b) For radio waves 
8

min 6
max

3.0 10 m s 1.0m
300 10 Hz

c ×λ = = =
λ ×

and
8

2
max 6

min

3.0 10 m s 2.0 10 m.
1.5 10 Hz

c ×λ = = = ×
λ ×

(c) For X rays 

8
16

min 9
max

3.0 10 m s 6.0 10 Hz
5.0 10 m

cf −

×= = = ×
λ ×

and
8

19
max 11

min

3.0 10 m s 3.0 10 Hz.
1.0 10 m

cf −

×= = = ×
λ ×

92. (a) For visible light 

8
14

min 9
max

3.0 10 m s 4.3 10 Hz
700 10 m

cf −

×= = = ×
λ ×

and



And the final one, shown below, is at t = 0.010 s. 

(c) The wave can be written as ( , ) sin( )my x t y kx tω= + , where /v kω=  is the speed of 
propagation. From the problem statement, we see that 2 / 0.40 5  rad/sω π π= = and

2 / 80 / 40 rad/cmk π π= = . This yields 22.0 10  cm/s 2.0 m/sv = × =

(d) These graphs (as well as the discussion in the textbook) make it clear that the wave is 
traveling in the –x direction. 

93. (a) Centimeters are to be understood as the length unit and seconds as the time unit. 
Making sure our (graphing) calculator is in radians mode, we find 

(b) The previous graph is at t = 0, and this next one is at t = 0.050 s. 



1. (a) When the speed is constant, we have v = d/t where v = 343 m/s is assumed. 
Therefore, with t = 15/2 s being the time for sound to travel to the far wall we obtain d = 
(343 m/s) × (15/2 s) which yields a distance of 2.6 km. 

(b) Just as the 1
2 factor in part (a) was 1/(n + 1) for n = 1 reflection, so also can we write 

( ) ( )( )343 1515s343m/s 1
1

d n
n d

= = −
+

for multiple reflections (with d in meters). For d = 25.7 m, we find n = 199 22.0 10≈ × .



2. The time it takes for a soldier in the rear end of the column to switch from the left to 
the right foot to stride forward is t = 1 min/120 = 1/120 min = 0.50 s. This is also the time 
for the sound of the music to reach from the musicians (who are in the front) to the rear 
end of the column. Thus the length of the column is 

2(343m/s)(0.50s) =1.7  10 m.l vt= = ×



3. (a) The time for the sound to travel from the kicker to a spectator is given by d/v,
where d is the distance and v is the speed of sound. The time for light to travel the same 
distance is given by d/c, where c is the speed of light. The delay between seeing and 
hearing the kick is Δt = (d/v) – (d/c). The speed of light is so much greater than the speed 
of sound that the delay can be approximated by Δt = d/v. This means d = v Δt. The 
distance from the kicker to spectator A is

dA = v ΔtA = (343 m/s)(0.23 s) = 79 m. 

(b) The distance from the kicker to spectator B is dB = v ΔtB = (343 m/s)(0.12 s) = 41 m. 

(c) Lines from the kicker to each spectator and from one spectator to the other form a 
right triangle with the line joining the spectators as the hypotenuse, so the distance 
between the spectators is 

( ) ( )2 22 2 79 m 41m 89 mA BD d d= + = + = .



3
3

0.0320kg 1.43kg/m .
0.0224 m

= =ρ

From /v B ρ=  we find

( ) ( )22 3 5317 m/s 1.43kg/m 1.44 10 Pa.B v= = = ×ρ

4. The density of oxygen gas is 



5. Let tf be the time for the stone to fall to the water and ts be the time for the sound of the 
splash to travel from the water to the top of the well. Then, the total time elapsed from 
dropping the stone to hearing the splash is t = tf + ts. If d is the depth of the well, then the 
kinematics of free fall gives  

21
2 fd gt= 2 / .ft d g=

The sound travels at a constant speed vs, so d = vsts, or ts = d/vs. Thus the total time is 
2 / / st d g d v= + . This equation is to be solved for d. Rewrite it as 2 / / sd g t d v= −

and square both sides to obtain

2d/g = t2 – 2(t/vs)d + (1 + 2
sv )d2.

Now multiply by g 2
sv  and rearrange to get

gd2 – 2vs(gt + vs)d + g 2
sv t2 = 0. 

This is a quadratic equation for d. Its solutions are 

( )22 2 2 22 ( ) 4 4
.

2
s s s s sv gt v v gt v g v t

d
g

+ ± + −
=

The physical solution must yield d = 0 for t = 0, so we take the solution with the negative 
sign in front of the square root. Once values are substituted the result d = 40.7 m is 
obtained.



( / )
( / )

s s s s

i i i i

f v B dp dV
f v B dp dV

= = = .

Thus, we have
2 2( / ) 1 9.00

( / ) 0.333
s i i

i s s

dV dp B f
dV dp B f

= = = = .

6. Using Eqs. 16-13 and 17-3, the speed of sound can be expressed as 

Bv fλ
ρ

= = ,

where ( / ) /B dp dV V= − .  Since , andV λ ρ  are not changed appreciably, the frequency 
ratio becomes 



7. If d is the distance from the location of the earthquake to the seismograph and vs is the 
speed of the S waves then the time for these waves to reach the seismograph is ts. = d/vs.
Similarly, the time for P waves to reach the seismograph is tp = d/vp. The time delay is  

Δt = (d/vs) – (d/vp) = d(vp – vs)/vsvp,
so

3(4.5  km/s)(8.0km/s)(3.0min)(60s /min) 1.9 10 km.
( ) 8.0km/s 4.5km/s

s p

p s

v v t
d

v v
Δ

= = = ×
− −

We note that values for the speeds were substituted as given, in km/s, but that the value 
for the time delay was converted from minutes to seconds. 



8. Let  be the length of the rod. Then the time of travel for sound in air (speed vs) will 
be /s st v= . And the time of travel for compressional waves in the rod (speed vr) will be 

/r rt v= . In these terms, the problem tells us that 

1 10.12s .s r
s r

t t
v v

− = = −

Thus, with vs = 343 m/s and vr = 15vs = 5145 m/s, we find 44 m= .



9. (a) Using λ = v/f, where v is the speed of sound in air and f is the frequency, we find 

5
6

343m/s 7.62 10 m.
4.50 10 Hz

−λ = = ×
×

(b) Now, λ = v/f, where v is the speed of sound in tissue. The frequency is the same for 
air and tissue. Thus

λ = (1500 m/s)/(4.50 × 106 Hz) = 3.33 × 10–4 m. 



10. (a) The amplitude of a sinusoidal wave is the numerical coefficient of the sine (or 
cosine) function: pm = 1.50 Pa. 

(b) We identify k = 0.9π and ω = 315π (in SI units), which leads to f = ω/2π = 158 Hz. 

(c) We also obtain λ = 2π/k = 2.22 m. 

(d) The speed of the wave is v = ω/k = 350 m/s. 



11. Without loss of generality we take x = 0, and let t = 0 be when s = 0. This means the 
phase is φ = −π/2 and the function is s = (6.0 nm)sin(ωt) at x = 0.  Noting that ω = 3000 
rad/s, we note that at t = sin−1(1/3)/ω = 0.1133 ms the displacement is s = +2.0 nm.  
Doubling that time (so that we consider the excursion from –2.0 nm to +2.0 nm) we 
conclude that the time required is 2(0.1133 ms) = 0.23 ms.  



12. The key idea here is that the time delay tΔ  is due to the distance d that each 
wavefront must travel to reach your left ear (L) after it reaches your right ear (R).

(a) From the figure, we find sind Dt
v v

θΔ = = .

(b) Since the speed of sound in water is now wv , with 90θ = ° , we have 

sin 90
w

w w

D Dt
v v

°Δ = = .

(c) The apparent angle can be found by substituting / wD v  for tΔ :

sin

w

D Dt
v v

θΔ = = .

Solving for θ  with 1482 m/swv =  (see Table 17-1), we obtain 

1 1 1343 m/ssin sin sin (0.231) 13
1482 m/sw

v
v

θ − − −= = = = °



13. (a) Consider a string of pulses returning to the stage. A pulse which came back just 
before the previous one has traveled an extra distance of 2w, taking an extra amount of 
time Δt = 2w/v. The frequency of the pulse is therefore 

( )
21 343m/s 2.3 10 Hz.

2 2 0.75m
vf

t w
= = = = ×

Δ

(b) Since f ∝ 1/w, the frequency would be higher if w were smaller. 



14. (a) The period is T  = 2.0 ms (or 0.0020 s) and the amplitude is Δpm = 8.0 mPa (which 
is equivalent to 0.0080 N/m2).  From Eq. 17-15 we get 

sm = 
Δpm

vρω  =
Δpm

vρ(2π/T)  =  6.1 × 10−9 m . 

where ρ = 1.21 kg/m3 and v = 343 m/s. 

(b) The angular wave number is k = ω/v = 2π/vT = 9.2 rad/m.   

(c) The angular frequency is ω = 2π/T = 3142 rad/s 33.1 10  rad/s≈ × .

The results may be summarized as s(x, t) = (6.1 nm) cos[(9.2 m−1)x – (3.1 × 103 s−1)t].

(d) Using similar reasoning, but with the new values for density ( ρ′  = 1.35 kg/m3) and 
speed ( v′ = 320 m/s), we obtain 

95.9 10  m.
' ' ' '(2 / )

m m
m

p ps
v v Tρ ω ρ π

−Δ Δ= = = ×

(e) The angular wave number is k = ω/v’ = 2π/v’T = 9.8 rad/m.   

(f) The angular frequency is ω = 2π/T = 3142 rad/s 33.1 10  rad/s≈ × .

The new displacement function is s(x, t) = (5.9 nm) cos[(9.8 m−1)x – (3.1 × 103 s−1)t].



Using the fact that k = 2π/λ we find λ = 0.357 m, which means 

f = v/λ = 343/0.357 = 960 Hz. 

Another way to complete this problem (once k is found) is to use  kv = ω  and then the 
fact that ω = 2πf.

15. The problem says “At one instant..” and we choose that instant (without loss of 
generality) to be t = 0.  Thus, the displacement of “air molecule A” at that instant is

sA = +sm = smcos(kxA − ωt + φ)|t=0 = smcos(kxA + φ),

where xA = 2.00 m.  Regarding “air molecule B” we have

sB = + 1
3 sm = sm cos( kxB − ωt + φ )|t=0 = sm cos( kxB + φ ).

These statements lead to the following conditions: 

kxA + φ = 0
kxB + φ = cos−1(1/3) = 1.231 

where xB = 2.07 m. Subtracting these equations leads to  

k(xB − xA) = 1.231 k = 17.6 rad/m. 



16. Let the separation between the point and the two sources (labeled 1 and 2) be x1 and 
x2, respectively. Then the phase difference is 

1 2 1 2
1 2

2 ( ) 2 (4.40 m 4.00 m)2 2 4.12 rad.
(330 m/s) / 540 Hz

x x x xft ft π πφ φ φ π π
λ λ λ

− −Δ = − = + − + = = =



17. (a) The problem is asking at how many angles will there be “loud” resultant waves, 
and at how many will there be “quiet” ones?  We note that at all points (at large distance 
from the origin) along the x axis there will be quiet ones; one way to see this is to note 
that the path-length difference (for the waves traveling from their respective sources) 
divided by wavelength gives the (dimensionless) value 3.5, implying a half-wavelength 
(180º) phase difference (destructive interference) between the waves.  To distinguish the 
destructive interference along the +x axis from the destructive interference along the –x
axis, we label one with +3.5 and the other –3.5.  This labeling is useful in that it suggests 
that the complete enumeration of the quiet directions in the upper-half plane (including 
the x axis) is: –3.5, –2.5, –1.5, –0.5, +0.5, +1.5, +2.5, +3.5.  Similarly, the complete 
enumeration of the loud directions in the upper-half plane is: –3, –2, –1, 0, +1, +2, +3.
Counting also the “other” –3, –2, –1,  0, +1, +2, +3 values for the lower-half plane, then 
we conclude there are a total of  7 + 7 = 14  “loud”  directions. 

(b) The discussion about the “quiet” directions was started in part (a).  The number of 
values in the list: –3.5, –2.5, –1.5, –0.5, +0.5, +1.5, +2.5, +3.5 along with  –2.5, –1.5, –0.5,
+0.5, +1.5, +2.5 (for the lower-half plane) is 14.  There are 14 “quiet” directions. 



18. At the location of the detector, the phase difference between the wave which traveled 
straight down the tube and the other one which took the semi-circular detour is 

2 ( 2 ).k d r rπΔ = Δ = π −
λ

φ

For r = rmin we have Δφ = π, which is the smallest phase difference for a destructive 
interference to occur. Thus, 

min
40.0cm 17.5cm.

2( 2) 2( 2)
r λ= = =

π − π −



19. Let L1 be the distance from the closer speaker to the listener. The distance from the 
other speaker to the listener is 2 2

2 1L L d= + , where d is the distance between the 
speakers. The phase difference at the listener is φ = 2π(L2 – L1)/λ, where λ is the 
wavelength.

For a minimum in intensity at the listener, φ = (2n + 1)π, where n is an integer. Thus,

λ = 2(L2 – L1)/(2n + 1). 
The frequency is 

( ) ( )2 2 2 2
1 1

(2 1) (2 1)(343m/s) (2 1)(343Hz).
2 2 (3.75m) (2.00m) 3.75m

v n v nf n
L d L

+ += = = = +
λ + − + −

Now 20,000/343 = 58.3, so 2n + 1 must range from 0 to 57 for the frequency to be in the 
audible range. This means n ranges from 0 to 28. 

(a) The lowest frequency that gives minimum signal is (n = 0) min,1 343 Hz.f =

(b) The second lowest frequency is (n = 1) min,2 min,1[2(1) 1]343 Hz 1029 Hz 3 .f f= + = =
Thus, the factor is 3.

(c) The third lowest frequency is (n=2) min,3 min,1[2(2) 1]343 Hz 1715 Hz 5 .f f= + = =  Thus, 
the factor is 5.

For a maximum in intensity at the listener, φ = 2nπ, where n is any positive integer. Thus 

( )2 2
1 1(1/ )n L d Lλ = + −  and 

2 2 2 2
1 1

(343m/s) (686 Hz).
(3.75m) (2.00m) 3.75m

v nv nf n
L d L

= = = =
λ + − + −

Since 20,000/686 = 29.2, n must be in the range from 1 to 29 for the frequency to be 
audible.

(d) The lowest frequency that gives maximum signal is (n =1) max,1 686 Hz.f =

(e) The second lowest frequency is (n = 2) max,2 max,12(686 Hz) 1372 Hz 2 .f f= = =  Thus, 
the factor is 2. 

(f) The third lowest frequency is (n = 3) max,3 max,13(686 Hz) 2058 Hz 3 .f f= = =  Thus, the 
factor is 3. 



20. (a) To be out of phase (and thus result in destructive interference if they superpose) 
means their path difference must be λ/2 (or 3λ/2 or 5λ/2 or …).  Here we see their path 
difference is L, so we must have (in the least possibility) L = λ/2, or q =L/λ = 0.5. 

(b) As noted above, the next possibility is L = 3λ/2, or q =L/λ = 1.5. 



max,2 max,12(286 Hz) 572 Hz 2 .f f= = =
Thus, the factor is 2. 

(f) The third lowest frequency that gives constructive interference is (n = 3) 

max,3 max,13(286 Hz) 858 Hz 3 .f f= = =
Thus, the factor is 3. 

21. Building on the theory developed in §17 – 5, we set / 1/ 2,  1, 2,...L n nλΔ = − =  in 
order to have destructive interference. Since v = fλ, we can write this in terms of 
frequency:

min,
(2 1) ( 1/ 2)(286 Hz)

2n
n vf n

L
−= = −
Δ

where we have used v = 343 m/s (note the remarks made in the textbook at the beginning 
of the exercises and problems section) and ΔL = (19.5 – 18.3 ) m = 1.2 m. 

(a) The lowest frequency that gives destructive interference is (n = 1) 

min,1 (1 1/ 2)(286 Hz) 143 Hz.f = − =

(b) The second lowest frequency that gives destructive interference is (n = 2) 

min,2 min,1(2 1/ 2)(286 Hz) 429 Hz 3(143 Hz) 3 .f f= − = = =

So the factor is 3. 

(c) The third lowest frequency that gives destructive interference is (n = 3) 

min,3 min,1(3 1/ 2)(286 Hz) 715 Hz 5(143 Hz) 5 .f f= − = = =

So the factor is 5. 

Now we set 1
2/LΔ =λ  (even numbers) — which can be written more simply as “(all 

integers n = 1, 2,…)” — in order to establish constructive interference. Thus, 

max, (286 Hz).n
nvf n

L
= =

Δ

(d) The lowest frequency that gives constructive interference is (n =1) max,1 (286 Hz).f =

(e) The second lowest frequency that gives constructive interference is (n = 2) 



22. (a) The problem indicates that we should ignore the decrease in sound amplitude 
which means that all waves passing through point P have equal amplitude.  Their 
superposition at P if d = λ/4 results in a net effect of zero there since there are four 
sources (so the first and third are λ/2 apart and thus interfere destructively; similarly for 
the second and fourth sources). 

(b) Their superposition at P if d = λ/2 also results in a net effect of zero there since there 
are an even number of sources (so the first and second being λ/2 apart will interfere 
destructively; similarly for the waves from the third and fourth sources). 

(c) If d = λ then the waves from the first and second sources will arrive at P in phase; 
similar observations apply to the second and third, and to the third and fourth sources.  
Thus, four waves interfere constructively there with net amplitude equal to 4sm.



Thus, in terms of λ, the phase difference is identical to the path length difference: 
| | 0= > . Consider / 2= . Then 2 2 / 2d x x+ = + λ . Squaring both sides, 
rearranging, and solving, we find 

2

.
4

dx λ= −
λ

In general, if =  for some multiplier ξ > 0, we find 

2 1 64.0
2 2
dx ξ ξ
ξ ξ

= − λ = −
λ

where we have used d = 16.0 m and λ = 2.00 m. 

(d) For 0.50= , or 0.50ξ = , we have 0.50) m 127.5 m 128 mx = (64.0/0.50 − = ≈ .

(e) For 1.00= , or 1.00ξ = , we have 1.00) m 63.0 mx = (64.0/1.00 − = .

(f) For 1.50= , or 1.50ξ = , we have 1.50) m 41.2 mx = (64.0/1.50 − = .

Note that since whole cycle phase differences are equivalent (as far as the wave 
superposition goes) to zero phase difference, then the ξ = 1, 2 cases give constructive 
interference. A shift of a half-cycle brings “troughs” of one wave in superposition with 
“crests” of the other, thereby canceling the waves; therefore, the 3 51

2 2 2, ,ξ =  cases 
produce destructive interference. 

23. (a) If point P is infinitely far away, then the small distance d between the two sources 
is of no consequence (they seem effectively to be the same distance away from P). Thus, 
there is no perceived phase difference. 

(b) Since the sources oscillate in phase, then the situation described in part (a) produces 
fully constructive interference. 

(c) For finite values of x, the difference in source positions becomes significant. The path 
lengths for waves to travel from S1 and S2 become now different. We interpret the 
question as asking for the behavior of the absolute value of the phase difference |Δφ|, in 
which case any change from zero (the answer for part (a)) is certainly an increase. 

The path length difference for waves traveling from S1 and S2 is 

2 2 for 0.d x x xΔ = + − >

The phase difference in “cycles” (in absolute value) is therefore 

2 2

.d x xΔ + −Δ = =
λ λ

φ



24. (a) Since intensity is power divided by area, and for an isotropic source the area may 
be written A = 4πr2 (the area of a sphere), then we have 

2
2

1.0W 0.080W/m .
4 (1.0m)

PI
A

= = =
π

(b) This calculation may be done exactly as shown in part (a) (but with r = 2.5 m instead 
of r = 1.0 m), or it may be done by setting up a ratio. We illustrate the latter approach. 
Thus,

22

2
/ 4 ( )
/ 4

I P r r
I P r r
′ ′π= =

′π

leads to I′ = (0.080 W/m2)(1.0/2.5)2 = 0.013 W/m2.



the power output and I is the intensity a distance r from the source, then P = IA = 4πr2I,
where A (= 4πr2) is the surface area of a sphere of radius r. Thus

P = 4π(2.50 m)2 (1.91 × 10–4 W/m2) = 1.50 × 10–2 W. 

25. The intensity is the rate of energy flow per unit area perpendicular to the flow. The 
rate at which energy flow across every sphere centered at the source is the same, 
regardless of the sphere radius, and is the same as the power output of the source. If P is 



26. Sample Problem 17-5 shows that a decibel difference Δβ is directly related to an 
intensity ratio (which we write as /I I= ′ ). Thus, 

/10 0.110log( )  10 10 1.26.ΔΔ = = = =ββ



27. The intensity is given by 2 21
2 ,mI v s= ρ ω  where ρ is the density of air, v is the speed of 

sound in air, ω is the angular frequency, and sm is the displacement amplitude for the 
sound wave. Replace ω with 2πf and solve for sm:

6 2
8

2 2 2 3 2

1.00 10 W/m 3.68 10 m.
2 2 (1.21kg/m )(343m/s)(300Hz)m

Is
v fρ

−
−×= = = ×

π π



28. (a) The intensity is given by I = P/4πr2 when the source is “point-like.” Therefore, at 
r = 3.00 m, 

6
9 2

2
1.00 10 W 8.84 10 W/m .
4 (3.00m)

I
−

−×= = ×
π

(b) The sound level there is 

9 2

12 2
8.84 10 W/m10 log 39.5dB.
1.00 10 W/m

−

−

×= =
×

β



29. (a) Let I1 be the original intensity and I2 be the final intensity. The original sound 
level is β1 = (10 dB) log(I1/I0) and the final sound level is β2 = (10 dB) log(I2/I0), where I0

is the reference intensity. Since β2 = β1 + 30 dB which yields 

 (10 dB) log(I2/I0) = (10 dB) log(I1/I0) + 30 dB, 
or

(10 dB) log(I2/I0) – (10 dB) log(I1/I0) = 30 dB. 

Divide by 10 dB and use log(I2/I0) – log(I1/I0) = log(I2/I1) to obtain log(I2/I1) = 3. Now 
use each side as an exponent of 10 and recognize that ( )2 1log

2 110 /I I I I= . The result is I2/I1

= 103. The intensity is increased by a factor of 1.0×103.

(b) The pressure amplitude is proportional to the square root of the intensity so it is 
increased by a factor of 1000 32.≈



30. (a) Eq. 17-29 gives the relation between sound level β and intensity I, namely 

( /10dB) 12 2 ( /10dB) 12 ( /10dB) 2
010 (10 W/m )10 10 W/mI I β β β− − += = =

Thus we find that for a β = 70 dB level we have a high intensity value of Ihigh = 10 μW/m2.

(b) Similarly, for β = 50 dB level we have a low intensity value of Ilow = 0.10 μW/m2.

(c) Eq. 17-27 gives the relation between the displacement amplitude and I.  Using the 
values for density and wave speed, we find sm = 70 nm for the high intensity case. 

(d) Similarly, for the low intensity case we have sm = 7.0 nm.   

We note that although the intensities differed by a factor of 100, the amplitudes differed 
by only a factor of 10. 



31. We use β = 10 log(I/Io) with Io = 1 × 10–12 W/m2 and Eq. 17–27 with ω = 2πf = 
2π(260 Hz), v = 343 m/s and ρ = 1.21 kg/m3.

( ) ( )28.5 2 7
o

110 2       7.6 10 m 0.76 m.
2 m mI I v f s sρ μ−= = π = × =



32. (a) Since ω = 2πf, Eq. 17-15 leads to 

( ) ( ) ( ) ( )
3

3

1.13 10 Pa2
2 1665Hz 343m/s 1.21 kg/mm m mp v f s sρ π

−×Δ = =
π

which yields sm = 0.26 nm. The nano prefix represents 10–9. We use the speed of sound 
and air density values given at the beginning of the exercises and problems section in the 
textbook.

(b) We can plug into Eq. 17–27 or into its equivalent form, rewritten in terms of the 
pressure amplitude: 

( ) ( )
( )( )

22 3
2

3

1.13 10 Pa1 1 1.5 nW/m .
2 2 1.21kg/m 343m/s

mp
I

vρ

−×Δ
= = =



33. We use β = 10 log (I/Io) with Io = 1 × 10–12 W/m2 and I = P/4πr2 (an assumption we 
are asked to make in the problem). We estimate r ≈ 0.3 m (distance from knuckle to ear) 
and find 

( ) ( )2 12 2 6.2 64 0.3m 1 10 W/m 10 2 10 W 2 W.P μ− −≈ π × = × =



(10 db) log f
f i

i

I
I

β β βΔ = − = .

Thus, if 5.0 dbβΔ = , then log( / ) 1/ 2f iI I = , which implies that 10f iI I= . On the other 

hand, the intensity at a distance r from the source is 24
PI
rπ

= , where P  is the power of 

the source. A fixed P implies that 2 2
i i f fI r I r= . Thus, with 1.2 m,ir =  we obtain 

1/ 2 1/ 41 (1.2 m) 0.67 m
10

i
f i

f

Ir r
I

= = = .

34. The difference in sound level is given by Eq. 17-37: 



35. (a) The intensity is 

5 2
2 2

30.0W 5.97 10 W/m .
4 (4 )(200m)

PI
r

−= = = ×
π π

(b) Let A (= 0.750 cm2) be the cross-sectional area of the microphone. Then the power 
intercepted by the microphone is 

5 2 2 4 2 2 90 (6.0 10 W/m )(0.750cm )(10 m / cm ) 4.48 10 W.P IA − − −′ = = = × = ×



36. Combining Eqs.17-28 and 17-29 we have β = 10 log P
Io4πr2  .  Taking differences (for 

sounds A and B) we find 

Δβ =  10 log PA

Io4πr2  – 10 log PB

Io4πr2 = 10 log PA
PB

using well-known properties of logarithms.  Thus, we see that Δβ is independent of r and 
can be evaluated anywhere.

(a) We can solve the above relation (once we know Δβ = 5.0) for the ratio of powers; we 
find PA /PB ≈ 3.2.

(b) At r = 1000 m it is easily seen (in the graph) that Δβ = 5.0 dB.  This is the same Δβ we 
expect to find, then, at r = 10 m.   



using Eq. 17-44.  In this equation, we substitute ρ = 1.21 kg/m3, A = πr2 = π(0.020 m)2, v
= 343 m/s, ω = 3000 rad/s, sm = 12 ×10−9 m, and obtain  the answer 3.4 × 10−10 W.   

(b) The second string is in a separate tube, so there is no question about the waves 
superposing.  The total rate of energy, then, is just the addition of the two: 2(3.4 × 10−10

W) = 6.8 × 10−10 W. 

(c) Now we do have superposition, with φ = 0, so the resultant amplitude is twice that of 
the individual wave which leads to the energy transport rate being four times that of part 
(a).  We obtain 4(3.4 × 10−10 W) = 1.4 × 10−9 W. 

(d) In this case φ = 0.4π, which means (using Eq. 17-39)   

sm′  =  2 sm cos(φ/2) = 1.618sm.

This means the energy transport rate is (1.618)2 = 2.618  times that of part (a).  We obtain 
2.618(3.4 × 10−10 W) = 8.8 × 10−10 W. 

(e) The situation is as shown in Fig. 17-14(b).  The answer is zero. 

37. (a) As discussed on page 408, the average potential energy transport rate is the same 
as that of the kinetic energy.  This implies that the (average) rate for the total energy is 

dE
dt avg

  = 2
dK
dt avg

  =  2 ( ¼ ρ A v ω2 sm
2 )



38. (a) Using Eq. 17–39 with v = 343 m/s and n = 1, we find f = nv/2L = 86 Hz for the 
fundamental frequency in a nasal passage of length L = 2.0 m (subject to various 
assumptions about the nature of the passage as a “bent tube open at both ends”). 

(b) The sound would be perceptible as sound (as opposed to just a general vibration) of 
very low frequency. 

(c) Smaller L implies larger f by the formula cited above. Thus, the female's sound is of 
higher pitch (frequency). 



39. (a) From Eq. 17–53, we have 

(1)(250m/s) 833Hz.
2 2(0.150m)
nvf
L

= = =

(b) The frequency of the wave on the string is the same as the frequency of the sound 
wave it produces during its vibration. Consequently, the wavelength in air is 

sound 348m/s 0.418m.
833Hz

v
f

λ = = =



40. The distance between nodes referred to in the problem means that  λ/2 = 3.8 cm, or  
λ = 0.076 m.  Therefore, the frequency is  

f = v/λ = (1500 m/s)/(0.076 m) ≈ 20 × 103 Hz.



41. (a) We note that 1.2 = 6/5.  This suggests that both even and odd harmonics are 
present, which means the pipe is open at both ends (see Eq. 17-39). 

(b) Here we observe 1.4 = 7/5. This suggests that only odd harmonics are present, which 
means the pipe is open at only one end (see Eq. 17-41). 



42. At the beginning of the exercises and problems section in the textbook, we are told to 
assume vsound = 343 m/s unless told otherwise. The second harmonic of pipe A is found 
from Eq. 17–39 with n = 2 and L = LA, and the third harmonic of pipe B is found from Eq. 
17–41 with n = 3 and L = LB. Since these frequencies are equal, we have 

sound sound2 3 3 .
2 4 4B A

A B

v v L L
L L

= =

(a) Since the fundamental frequency for pipe A is 300 Hz, we immediately know that the 
second harmonic has f = 2(300 Hz) = 600 Hz. Using this, Eq. 17–39 gives

LA = (2)(343 m/s)/2(600 s−1) = 0.572 m. 

(b) The length of pipe B is 3
4 0.429 m.B AL L= =



43. (a) When the string (fixed at both ends) is vibrating at its lowest resonant frequency, 
exactly one-half of a wavelength fits between the ends. Thus, λ = 2L. We obtain  

v = fλ = 2Lf = 2(0.220 m)(920 Hz) = 405 m/s. 

(b) The wave speed is given by / ,v τ μ=  where τ is the tension in the string and μ is 
the linear mass density of the string. If M is the mass of the (uniform) string, then μ = 
M/L. Thus,
 

τ = μv2 = (M/L)v2 = [(800 × 10–6 kg)/(0.220 m)] (405 m/s)2 = 596 N. 

(c) The wavelength is λ = 2L = 2(0.220 m) = 0.440 m. 

(d) The frequency of the sound wave in air is the same as the frequency of oscillation of 
the string. The wavelength is different because the wave speed is different. If va is the 
speed of sound in air the wavelength in air is

λa = va/f = (343 m/s)/(920 Hz) = 0.373 m. 



44. The frequency is f = 686 Hz and the speed of sound is vsound = 343 m/s. If L is the 
length of the air-column, then using Eq. 17–41, the water height is (in unit of meters) 

(343)1.00 1.00 1.00 (1.00 0.125 ) m
4 4(686)
nv nh L n

f
= − = − = − = −

where n = 1, 3, 5,… with only one end closed. 

(a) There are 4 values of n (n = 1,3,5,7) which satisfies h > 0. 

(b) The smallest water height for resonance to occur corresponds to n = 7 with 
0.125 mh = .

(c) The second smallest water height corresponds to n = 5 with h  = 0.375 m. 



45. (a) Since the pipe is open at both ends there are displacement antinodes at both ends 
and an integer number of half-wavelengths fit into the length of the pipe. If L is the pipe 
length and λ is the wavelength then λ = 2L/n, where n is an integer. If v is the speed of 
sound then the resonant frequencies are given by f = v/λ = nv/2L. Now L = 0.457 m, so  

f = n(344 m/s)/2(0.457 m) = 376.4n Hz. 

To find the resonant frequencies that lie between 1000 Hz and 2000 Hz, first set f = 1000 
Hz and solve for n, then set f = 2000 Hz and again solve for n. The results are 2.66 and 
5.32, which imply that n = 3, 4, and 5 are the appropriate values of n. Thus, there are 3 
frequencies.

(b) The lowest frequency at which resonance occurs is (n = 3) f = 3(376.4 Hz) = 1129 Hz.

(c) The second lowest frequency at which resonance occurs is (n = 4)

f = 4(376.4 Hz) = 1506 Hz. 



46. (a) Since the difference between consecutive harmonics is equal to the fundamental 
frequency (see section 17-6) then  f1 = (390 – 325) Hz = 65 Hz.  The next harmonic after 
195 Hz is therefore (195 + 65) Hz = 260 Hz. 

(b) Since fn = nf1  then n = 260/65 = 4. 

(c) Only odd harmonics are present in tube B so the difference between consecutive 
harmonics is equal to twice the fundamental frequency in this case (consider taking 
differences of Eq. 17-41 for various values of n). Therefore,

f1 = 12 (1320 – 1080) Hz = 120 Hz. 

The next harmonic after 600 Hz is consequently [600 + 2(120)] Hz = 840 Hz. 

(d) Since fn = nf1  (for n odd) then n = 840/120 = 7. 



47. The string is fixed at both ends so the resonant wavelengths are given by λ = 2L/n,
where L is the length of the string and n is an integer. The resonant frequencies are given 
by f = v/λ = nv/2L, where v is the wave speed on the string. Now /v = τ μ , where τ is 
the tension in the string and μ is the linear mass density of the string. Thus 

( / 2 ) /f n L= τ μ . Suppose the lower frequency is associated with n = n1 and the higher 
frequency is associated with n = n1 + 1. There are no resonant frequencies between so 
you know that the integers associated with the given frequencies differ by 1. Thus 

1 1( / 2 ) /f n L= τ μ  and 

1 1
2 1

1 1 1 .
2 2 2 2

n nf f
L L L L
+= = + = +τ τ τ τ

μ μ μ μ

This means 2 1 (1/ 2 ) /f f L− = τ μ  and 

2 2 2 3 2
2 14 ( ) 4(0.300m) (0.650 10 kg/m)(1320Hz 880Hz) 45.3N.L f fτ μ −= − = × − =



48. (a) Using Eq. 17–39 with n = 1 (for the fundamental mode of vibration) and 343 m/s 
for the speed of sound, we obtain 

sound

tube

(1) 343m/s 71.5Hz.
4 4(1.20m)

vf
L

= = =

(b) For the wire (using Eq. 17–53) we have 

wire

wire wire

1
2 2
nvf
L L

τ
μ

′ = =

where μ = mwire/Lwire. Recognizing that f = f ′ (both the wire and the air in the tube vibrate 
at the same frequency), we solve this for the tension τ:

2 2 2 3wire
wire wire wire

wire

(2 ) 4 4(71.5Hz) (9.60 10 kg)(0.330 m) 64.8 N.mL f f m L
L

τ −= = = × =



/ ,v B ρ=  where B is the bulk modulus and ρ is the density of air in the well. Thus 

(1/ 4 ) /f d B ρ= and
5

3

1 1 1.33 10 Pa 12.4m.
4 4(7.00Hz) 1.10kg/m

Bd
f ρ

×= = =

49. The top of the water is a displacement node and the top of the well is a displacement 
anti-node. At the lowest resonant frequency exactly one-fourth of a wavelength fits into 
the depth of the well. If d is the depth and λ is the wavelength then λ = 4d. The frequency 
is f = v/λ = v/4d, where v is the speed of sound. The speed of sound is given by 



50. We observe that “third lowest … frequency” corresponds to harmonic number nA = 3 
for pipe A which is open at both ends. Also,  “second lowest … frequency” corresponds 
to harmonic number nB = 3 for pipe B which is closed at one end. 

(a) Since the frequency of B matches the frequency of A, using Eqs. 17-39 and 17-41, we 
have  

3 3
2 4A B

A B

v vf f
L L

= =

which implies / 2 (1.20 m) / 2 0.60 mB AL L= = = . Using Eq. 17-40, the corresponding 
wavelength is 

4 4(0.60 m) 0.80 m
3 3

BLλ = = = .

The change from node to anti-node requires a distance of λ/4 so that every increment of 
0.20 m along the x axis involves a switch between node and anti-node. Since the closed 
end is a node, the next node appears at x = 0.40 m So there are 2 nodes. The situation 
corresponds to that illustrated in Fig. 17-15(b) with 3n = .

(b) The smallest value of x where a node is present is x = 0. 

(c) The second smallest value of x where a node is present is x = 0.40m. 

(d) Using v = 343 m/s, we find f3 = v/λ = 429 Hz. Now, we find the fundamental resonant 
frequency by dividing by the harmonic number, f1 = f3/3 = 143 Hz. 



51. Let the period be T. Then the beat frequency is 1/ 440Hz 4.00beats/s.T − =
Therefore, T = 2.25 × 10–3 s. The string that is “too tightly stretched” has the higher 
tension and thus the higher (fundamental) frequency. 



52. Since the beat frequency equals the difference between the frequencies of the two 
tuning forks, the frequency of the first fork is either 381 Hz or 387 Hz. When mass is 
added to this fork its frequency decreases (recall, for example, that the frequency of a 
mass-spring oscillator is proportional to 1/ m ). Since the beat frequency also decreases 
the frequency of the first fork must be greater than the frequency of the second. It must 
be 387 Hz. 



53. Each wire is vibrating in its fundamental mode so the wavelength is twice the length 
of the wire (λ = 2L) and the frequency is

/ (1/ 2 ) /f v L= λ = τ μ ,

where /v τ μ=  is the wave speed for the wire, τ is the tension in the wire, and μ is the 
linear mass density of the wire. Suppose the tension in one wire is τ and the oscillation 
frequency of that wire is f1. The tension in the other wire is τ + Δτ and its frequency is f2.
You want to calculate Δτ/τ for f1 = 600 Hz and f2 = 606 Hz. Now, 1 (1/ 2 ) /f L= τ μ  and 

2 (1/ 2 ) ( /f L= + Δτ τ μ , so 

2 1/ ( ) / 1 ( / ).f f = + Δ = + Δτ τ τ τ τ

This leads to 2 2
2 1/ ( / ) 1 [(606 Hz) /(600 Hz)] 1 0.020.f fΔ = − = − =τ τ



54. (a) The number of different ways of picking up a pair of tuning forks out of a set of 
five is 5!/(2!3!) = 10. For each of the pairs selected, there will be one beat frequency. If 
these frequencies are all different from each other, we get the maximum possible number 
of 10. 

(b) First, we note that the minimum number occurs when the frequencies of these forks, 
labeled 1 through 5, increase in equal increments: fn = f1 + nΔf, where n = 2, 3, 4, 5. Now, 
there are only 4 different beat frequencies: fbeat = nΔf, where n = 1, 2, 3, 4. 



55. In the general Doppler shift equation, the trooper’s speed is the source speed and the 
speeder’s speed is the detector’s speed. The Doppler effect formula, Eq. 17–47, and its 
accompanying rule for choosing ± signs, are discussed in §17-10. Using that notation, we 
have v = 343 m/s,  

vD = vS =  160 km/h = (160000 m)/(3600 s) = 44.4 m/s, 

and f = 500 Hz. Thus, 
343 m/s 44.4 m/s(500 Hz) 500 Hz  0.
343 m/s 44.4 m/s

f f−′ = = Δ =
−



56. The Doppler effect formula, Eq. 17–47, and its accompanying rule for choosing ±
signs, are discussed in §17-10. Using that notation, we have v = 343 m/s, vD = 2.44 m/s,  
f ′ = 1590 Hz and f = 1600 Hz. Thus, 

  ( ) 4.61m/s.D
S D

S

v v ff f v v v v
v v f

+′ = = + − =
′+



57. We use vS = rω (with r = 0.600 m and ω = 15.0 rad/s) for the linear speed during 
circular motion, and Eq. 17–47 for the Doppler effect (where f = 540 Hz, and v = 343 m/s 
for the speed of sound). 

(a) The lowest frequency is
0 526 Hz
S

vf f
v v

+′ = =
+

.

(b) The highest frequency is 
0 555 Hz
S

vf f
v v

+′ = =
−

.



58. We are combining two effects: the reception of a moving object (the truck of speed u
= 45.0 m/s) of waves emitted by a stationary object (the motion detector), and the 
subsequent emission of those waves by the moving object (the truck) which are picked up 
by the stationary detector. This could be figured in two steps, but is more compactly 
computed in one step as shown here: 

final initial
343m/s  45m/s(0.150 MHz) 0.195MHz.
343m/s  45m/s

v uf f
v u

+ += = =
− −



59. In this case, the intruder is moving away from the source with a speed u satisfying u/v
 1. The Doppler shift (with u = –0.950 m/s) leads to 

beat
2 | | 2(0.95m/s)(28.0 kHz)) 155Hz

343m/sr s s
uf f f f

v
= − ≈ = = .



60. We use Eq. 17–47 with f = 1200 Hz and v = 329 m/s. 

(a) In this case, vD = 65.8 m/s and vS = 29.9 m/s, and we choose signs so that f ′ is larger 
than f:

3329 m/s 65.8 m/s 1.58 10 Hz.
329 m/s 29.9 m/s

f f +′ = = ×
−

(b) The wavelength is λ = v/f ′ = 0.208 m. 

(c) The wave (of frequency f ′) “emitted” by the moving reflector (now treated as a 
“source,” so vS = 65.8 m/s) is returned to the detector (now treated as a detector, so vD = 
29.9 m/s) and registered as a new frequency f ′′:

3329 m/s 29.9 m/s 2.16 10 Hz.
329 m/s 65.8 m/s

f f +′′ ′= = ×
−

(d) This has wavelength /v f ′′  = 0.152 m. 



61. We denote the speed of the French submarine by u1 and that of the U.S. sub by u2.

(a) The frequency as detected by the U.S. sub is 

3 32
1 1

1

5470 km/h 70.00 km/h(1.000 10 Hz) 1.022  10 Hz.
5470 km/h  50.00 km/h

v uf f
v u

+ +′= = × = ×
− −

(b) If the French sub were stationary, the frequency of the reflected wave would be fr = 
f1(v+u2)/(v – u2). Since the French sub is moving towards the reflected signal with speed 
u1, then 

3
1 1 2

1
2

3

( )( ) (1.000 10 Hz)(5470 50.00)(5470 70.00)
( ) (5470)(5470 70.00)

   1.045 10 Hz.

r r
v u v u v uf f f

v v v u
+ + + × + +′ = = =

− −

= ×



62. When the detector is stationary (with respect to the air) then Eq. 17-47 gives  

1 /s

ff
v v

′ =
−

where vs is the speed of the source (assumed to be approaching the detector in the way 
we’ve written it, above).  The difference between the approach and the recession is 

f f′ ′′− = f 1
1 –  vs /v   – 1

1 +  vs /v   = f
2 vs /v

1 –  (vs /v)2

which, after setting  ( f f′ ′′− )/f = 1/2, leads to an equation which can be solved for the 
ratio vs/v.  The result is 5 – 2   = 0.236.  Thus, vs/v = 0.236. 



63. As a result of the Doppler effect, the frequency of the reflected sound as heard by the 
bat is 

4 4bat

bat

/ 40(3.9 10 Hz) 4.1 10 Hz.
/ 40r

v u v vf f
v u v v

+ +′= = × = ×
− −



where dv  is the speed of the detector (assumed to be moving away from the source, in the 
way we’ve written it, above).  The problem, then, wants us to find dv  such that f′ = f1

when the emitted frequency is  f = f3.  That is, we require 1 – dv /v = 1/3.  Clearly, the 
solution to this is dv /v = 2/3 (independent of length and whether one or both ends are 
open [the latter point being due to the fact that the odd harmonics occur in both systems]). 
Thus,

(a) For tube 1, dv =2v/3.

(b) For tube 2, dv =2v /3. 

(c) For tube 3, dv =2v /3. 

(d) For tube 4, dv =2v /3. 

64. The “third harmonic” refers to a resonant frequency f3 = 3 f1, where f1 is the 
fundamental lowest resonant frequency. When the source is stationary, with respect to the 
air, then Eq. 17-47 gives

1 dvf f
v

′ = −



65. (a) The expression for the Doppler shifted frequency is 

,D

S

v vf f
v v

±′ =

where f is the unshifted frequency, v is the speed of sound, vD is the speed of the detector 
(the uncle), and vS is the speed of the source (the locomotive). All speeds are relative to 
the air. The uncle is at rest with respect to the air, so vD = 0. The speed of the source is vS
= 10 m/s. Since the locomotive is moving away from the uncle the frequency decreases 
and we use the plus sign in the denominator. Thus 

343m/s(500.0 Hz) 485.8Hz.
343m/s + 10.00m/sS

vf f
v v

′ = = =
+

(b) The girl is now the detector. Relative to the air she is moving with speed vD = 10.00 
m/s toward the source. This tends to increase the frequency and we use the plus sign in 
the numerator. The source is moving at vS = 10.00 m/s away from the girl. This tends to 
decrease the frequency and we use the plus sign in the denominator. Thus (v + vD) =
(v + vS) and f′ = f = 500.0 Hz. 

(c) Relative to the air the locomotive is moving at vS = 20.00 m/s away from the uncle. 
Use the plus sign in the denominator. Relative to the air the uncle is moving at vD =
10.00 m/s toward the locomotive. Use the plus sign in the numerator. Thus 

343m/s + 10.00m/s(500.0 Hz) 486.2 Hz.
343m/s + 20.00m/s

D

S

v vf f
v v

+′ = = =
+

(d) Relative to the air the locomotive is moving at vS = 20.00 m/s away from the girl and 
the girl is moving at vD = 20.00 m/s toward the locomotive. Use the plus signs in both the 
numerator and the denominator. Thus (v + vD) = (v + vS) and f′ = f = 500.0 Hz. 



66. We use Eq. 17–47 with f = 500 Hz and v = 343 m/s. We choose signs to produce f′ > f.

(a) The frequency heard in still air is 

343 m/s 30.5 m/s(500 Hz) 598Hz.
343 m/s 30.5 m/s

f +′ = =
−

(b) In a frame of reference where the air seems still, the velocity of the detector is 30.5 – 
30.5 = 0, and that of the source is 2(30.5). Therefore, 

343 m/s 0(500 Hz) 608Hz.
343 m/s 2(30.5 m/s)

f +′ = =
−

(c) We again pick a frame of reference where the air seems still. Now, the velocity of the 
source is 30.5 – 30.5 = 0, and that of the detector is 2(30.5). Consequently, 

343 m/s 2(30.5 m/s)(500 Hz) 589 Hz.
343 m/s 0

f +′ = =
−



67. The Doppler shift formula, Eq. 17–47, is valid only when both uS and uD are 
measured with respect to a stationary medium (i.e., no wind). To modify this formula in 
the presence of a wind, we switch to a new reference frame in which there is no wind. 

(a) When the wind is blowing from the source to the observer with a speed w, we have u′S
= u′D = w in the new reference frame that moves together with the wind. Since the 
observer is now approaching the source while the source is backing off from the observer, 
we have, in the new reference frame, 

32.0 10 Hz.D

S

v u v wf f f
v u v w

′+ +′ = = = ×
′+ +

In other words, there is no Doppler shift. 

(b) In this case, all we need to do is to reverse the signs in front of both u′D and u′S. The 
result is that there is still no Doppler shift: 

32.0 10 Hz.D

S

v u v wf f f
v u v w

′− −′ = = = ×
′− −

In general, there will always be no Doppler shift as long as there is no relative motion 
between the observer and the source, regardless of whether a wind is present or not. 



68. We note that 1350 km/h is vS  = 375 m/s.  Then, with θ = 60º, Eq. 17-57 gives v = 
3.3×102 m/s. 



69. (a) The half angle θ of the Mach cone is given by sin θ = v/vS, where v is the speed of 
sound and vS is the speed of the plane. Since vS = 1.5v, sin θ = v/1.5v = 1/1.5. This means 
θ = 42°. 

(b) Let h be the altitude of the plane and suppose the Mach 
cone intersects Earth's surface a distance d behind the plane. 
The situation is shown on the diagram below, with P 
indicating the plane and O indicating the observer. The cone 
angle is related to h and d by tan θ = h/d, so d = h/tan θ. The 
shock wave reaches O in the time the plane takes to fly the 
distance d:

5000 m 11s
tan 1.5(331 m/s)tan42

d ht
v v θ

= = = =
°

.



70. The altitude H and the horizontal distance x for the legs of a right triangle, so we have

tan tan 1.25 sinpH x v t vt= = =θ θ θ

where v is the speed of sound, vp is the speed of the plane and

1 1sin sin 53.1 .
1.25p

v v
v v

θ − −= = = °

Thus the altitude is

( ) ( ) ( ) ( ) 4tan 1.25 330m/s 60s tan53.1 3.30 10 m.H x= = ° = ×θ



71. (a) Incorporating a term (λ/2) to account for the phase shift upon reflection, then the 
path difference for the waves (when they come back together) is 

L2 + (2d)2 − L + λ/2 = Δ(path) . 

Setting this equal to the condition needed to destructive interference (λ/2, 3λ/2, 5λ/2 …) 
leads to d = 0, 2.10 m, …    Since the problem explicitly excludes the d = 0 possibility, 
then our answer is d = 2.10 m. 

(b) Setting this equal to the condition needed to constructive interference (λ, 2λ, 3λ …) 
leads to d = 1.47 m, …   Our answer is d = 1.47 m. 



72. When the source is stationary (with respect to the air) then Eq. 17-47 gives  

1 dvf f
v

′ = − ,

 where v d is the speed of the detector (assumed to be moving away from the source, in the 
way we’ve written it, above).  The difference between the approach and the recession is 

1 1 2d d dv v vf f f f
v v v

′′ ′− = + − − =

which, after setting  ( f f′′ ′− )/f =1/2, leads to an equation which can be solved for the 
ratio vd /v.  The result is 1/4. Thus, vd /v = 0.250. 



73. (a) Adapting Eq. 17-39 to the notation of this chapter, we have 

sm′  =  2 sm cos(φ/2) = 2(12 nm) cos(π/6) = 20.78 nm. 

Thus, the amplitude of the resultant wave is roughly 21 nm. 

(b) The wavelength (λ = 35 cm) does not change as a result of the superposition. 

(c) Recalling Eq. 17-47 (and the accompanying discussion) from the previous chapter, we 
conclude that the standing wave amplitude is 2(12 nm) = 24 nm when they are traveling 
in opposite directions. 

(d) Again, the wavelength (λ = 35 cm) does not change as a result of the superposition. 



74. (a) The separation distance between points A and B is one-quarter of a wavelength; 
therefore, λ = 4(0.15 m) = 0.60 m.  The frequency, then, is   

f = v/λ =  (343 m/s)/(0.60 m) = 572 Hz. 

(b) The separation distance between points C and D is one-half of a wavelength; 
therefore, λ = 2(0.15 m) = 0.30 m.  The frequency, then, is   

f = v/λ =  (343 m/s)/(0.30 m) = 1144 Hz (or approximately 1.14 kHz). 



75. Any phase changes associated with the reflections themselves are rendered 
inconsequential by the fact that there are an even number of reflections. The additional 
path length traveled by wave A consists of the vertical legs in the zig-zag path: 2L. To be 
(minimally) out of phase means, therefore, that 2L = λ/2 (corresponding to a half-cycle, 
or 180°, phase difference). Thus, L = λ/4, or L/λ = 1/4 = 0.25. 



76. Since they are approaching each other, the sound produced (of emitted frequency f)
by the flatcar-trumpet received by an observer on the ground will be of higher pitch f ′. In 
these terms, we are told f ′ – f = 4.0 Hz, and consequently that f ‘/ f = 444/440 = 1.0091. 
With vS designating the speed of the flatcar and v = 343 m/s being the speed of sound, the 
Doppler equation leads to 

( )0 1.0091 1343 m/s 3.1m/s.
1.0091S

S

f v v
f v v
′ + −= = =

−



77. The siren is between you and the cliff, moving away from you and towards the cliff. 
Both “detectors” (you and the cliff) are stationary, so vD = 0 in Eq. 17–47 (and see the 
discussion in the textbook immediately after that equation regarding the selection of ±
signs). The source is the siren with vS = 10 m/s. The problem asks us to use v = 330 m/s 
for the speed of sound. 

(a) With f = 1000 Hz, the frequency fy you hear becomes 

20 970.6 Hz 9.7 10 Hz.y
S

vf f
v v

+= = ≈ ×
+

(b) The frequency heard by an observer at the cliff (and thus the frequency of the sound 
reflected by the cliff, ultimately reaching your ears at some distance from the cliff) is 

30 1031.3Hz 1.0 10 Hz.c
S

vf f
v v

+= = ≈ ×
−

(c) The beat frequency is fc – fy = 60 beats/s (which, due to specific features of the human 
ear, is too large to be perceptible). 



78. Let r stand for the ratio of the source speed to the speed of sound.  Then, Eq. 17-55 
(plus the fact that frequency is inversely proportional to wavelength) leads to 

2
1

1 + r    =
1

1 – r  . 

Solving, we find r = 1/3.  Thus, vs/v = 0.33. 



22
2 2 1

2
1 1 2

/ 4 .
/ 4

I P r r
I P r r

π= =
π

(a) With I1 = 9.60 × 10–4 W/m2, r1 = 6.10 m, and r2 = 30.0 m, we find  

I2 = (9.60 × 10–4 W/m2)(6.10/30.0)2 = 3.97 × 10–5 W/m2.

(b) Using Eq. 17–27 with I1 = 9.60 × 10–4 W/m2, ω = 2π(2000 Hz), v = 343 m/s and ρ = 
1.21 kg/m3, we obtain 

7
2

2 1.71 10 m.m
Is

v
−= = ×

ρ ω

(c) Eq. 17-15 gives the pressure amplitude: 

0.893 Pa.m mp v sρ ωΔ = =

79. The source being isotropic means Asphere = 4πr2 is used in the intensity definition I = 
P/A, which further implies 



80. When φ = 0 it is clear that the superposition wave has amplitude 2Δpm. For the other 
cases, it is useful to write 

( ) ( )( )1 2 sin sin 2 cos sin .
2 2m mp p p t t p tΔ + Δ = Δ + − = Δ −φ φω ω φ ω

The factor in front of the sine function gives the amplitude Δpr. Thus, 
/ 2cos( / 2).r mp p φΔ Δ =

(a) When 0φ = , / 2cos(0) 2.00.r mp pΔ Δ = =

(b) When / 2φ π= , / 2cos( / 4) 2 1.41.r mp p πΔ Δ = = =

(c) When / 3φ π= , / 2cos( / 6) 3 1.73.r mp p πΔ Δ = = =

(d) When / 4φ π= , / 2cos( / 8) 1.85.r mp p πΔ Δ = =



Alternatively, a ratio I′ /I = (r/r′ )2 could have been used. 

(c) Using Eq. 17–29 with I = 0.0080 W/m2, we have 

0

10log 99dBI
I

= =β

where I0 = 1.0 × 10–12 W/m2.

81. (a) With r = 10 m in Eq. 17–28, we have 

2 10W.
4

PI P
r

= =
π

(b) Using that value of P in Eq. 17–28 with a new value for r, we obtain 

( )2 2
W0.032 .
m4 5.0

PI = =
π



82. We use /v B ρ=  to find the bulk modulus B:

( ) ( )22 3 3 3 105.4 10 m/s 2.7 10 kg/m 7.9 10 Pa.B v= = × × = ×ρ



83. Let the frequencies of sound heard by the person from the left and right forks be fl
and fr, respectively. 

(a) If the speeds of both forks are u, then fl,r = fv/(v ± u) and 

( )( )( )
( ) ( )beat 2 22 2

2 440Hz 3.00m/s 343m/s1 1 2
343m/s 3.00m/s

7.70Hz.

r l
fuvf f f fv

v u v u v u
= − = − = =

− + − −
=

(b) If the speed of the listener is u, then fl,r = f(v ± u)/v and 

( )beat
3.00 m/s2 2 440 Hz 7.70 Hz.
343m/sl r

uf f f f
v

= − = = =



84. The rule: if you divide the time (in seconds) by 3, then you get (approximately) the 
straight-line distance d. We note that the speed of sound we are to use is given at the 
beginning of the problem section in the textbook, and that the speed of light is very much 
larger than the speed of sound. The proof of our rule is as follows: 

sound light sound
sound

.
343m/s 0.343km/s

d d dt t t t
v

= − ≈ = = =

Cross-multiplying yields (approximately) (0.3 km/s)t = d which (since 1/3 ≈ 0.3) 
demonstrates why the rule works fairly well. 



= (Δpm)2/2ρv. For waves of the same frequency the ratio of the intensity for propagation 
in water to the intensity for propagation in air is 

2

,w mw a a

a ma w w

I p v
I p v

ρ
ρ

Δ=
Δ

where the subscript a denotes air and the subscript w denotes water. Since Ia = Iw,

3 3

3
(0.998 10 kg/m )(1482 m/s) 59.7.

(1.21kg/m )(343m/s)
mw w w

ma a a

p v
p v

Δ ×= = =
Δ

ρ
ρ

The speeds of sound are given in Table 17-1 and the densities are given in Table 15-1. 

(b) Now, Δpmw = Δpma, so 

3
4

3 3
(1.21kg/m )(343m/s) 2.81 10 .

(0.998 10 kg/m )(1482 m/s)
w a a

a w w

I v
I v

−= = = ×
×

ρ
ρ

85. (a) The intensity is given by 2 21
2 ,mI v sρ ω=  where ρ is the density of the medium, v is 

the speed of sound, ω is the angular frequency, and sm is the displacement amplitude. The 
displacement and pressure amplitudes are related by Δpm = ρvωsm, so sm = Δpm/ρvω and I



86. We use Δβ12 = β1 – β2 = (10 dB) log(I1/I2).

(a) Since Δβ12 = (10 dB) log(I1/I2) = 37 dB, we get

I1/I2 = 1037 dB/10 dB = 103.7 = 5.0 × 103.

(b) Since m mp s IΔ ∝ ∝ , we have

3
1 2 1 2/ / 5.0 10 71.m mp p I IΔ Δ = = × =

(c) The displacement amplitude ratio is 1 2 1 2/ / 71.m ms s I I= =



sSAD – sSBD, where the subscripts indicate the paths of the waves. At the maximum, the 
waves interfere constructively and the displacement amplitude is the sum of the 
amplitudes of the individual waves: sm = sSAD + sSBD. Solve

100 ( )SAD SBDC s s= − and 900 ( )SAD SBDC s s= −

for sSAD and sSBD. Adding the equations give 

SADs = ( 100 900 / 2 20 / ,C C+ =

while subtracting them yields  

SBDs = ( 900 100) / 2 10 / .C C− =

Thus, the ratio of the amplitudes is sSAD/sSBD = 2. 

(c) Any energy losses, such as might be caused by frictional forces of the walls on the air 
in the tubes, result in a decrease in the displacement amplitude. Those losses are greater 
on path B since it is longer than path A. 

87. (a) When the right side of the instrument is pulled out a distance d the path length for 
sound waves increases by 2d. Since the interference pattern changes from a minimum to 
the next maximum, this distance must be half a wavelength of the sound. So 2d = λ/2,
where λ is the wavelength. Thus λ = 4d and, if v is the speed of sound, the frequency is

f = v/λ = v/4d = (343 m/s)/4(0.0165 m) = 5.2 × 103 Hz. 

(b) The displacement amplitude is proportional to the square root of the intensity (see Eq. 
17–27). Write mI Cs= , where I is the intensity, sm is the displacement amplitude, and C
is a constant of proportionality. At the minimum, interference is destructive and the 
displacement amplitude is the difference in the amplitudes of the individual waves: sm = 



88. The angle is sin–1(v/vs) = sin–1 (343/685) = 30°. 



89. The round-trip time is t = 2L/v where we estimate from the chart that the time 
between clicks is 3 ms. Thus, with v = 1372 m/s, we find 1

2 2.1 mL vt= = .



90. The wave is written as ( , ) cos( )ms x t s kx tω= ± .

(a) The amplitude ms  is equal to the maximum displacement: 0.30 cmms = .

(b) Since λ = 24 cm, the angular wave number is 12 / 0.26 cmk π λ −= = .

(c) The angular frequency is 22 2 (25 Hz) 1.6 10  rad/sfω π π= = = × .

(d) The speed of the wave is v = λf = (24 cm)(25 Hz) = 6.0 × 102 cm/s. 

(e) Since the direction of propagation is x− , the sign is plus, i.e., ( , ) cos( )ms x t s kx tω= + .



From the discussion in §17-5, we know that the intensity ratio between “barely audible” 
and the “painful threshold” is 10–12 = I2/I1. Thus, with r2 = 10000 m, we find  

12
1 2 10 0.01m 1 cm.r r −= = =

91. The source being a “point source” means Asphere = 4πr2 is used in the intensity 
definition I = P/A, which further implies 

22
2 2 1

2
1 1 2

/ 4 .
/ 4

I P r r
I P r r

π= =
π



92. (a) The time it takes for sound to travel in air is ta = L/v, while it takes tm = L/vm for 
the sound to travel in the metal. Thus, 

( ) .m
a m

m m

L v vL Lt t t
v v v v

−Δ = − = − =

(b) Using the values indicated (see Table 17-1), we obtain 

1.00s 364m. 
1/ 1/ 1/(343m/s)  1/(5941m/s)m

tL
v v

Δ= = =
− −



93. (a) We observe that “third lowest … frequency” corresponds to harmonic number n = 
5 for such a system. Using Eq. 17–41, we have 

( )
5750 Hz

4 4 0.60 m
nv vf
L

= =

so that v = 3.6×102 m/s. 

(b) As noted, n = 5; therefore, f1 = 750/5 = 150 Hz. 



94. We note that waves 1 and 3 differ in phase by π radians (so they cancel upon 
superposition).  Waves 2 and 4 also differ in phase by π radians (and also cancel upon 
superposition).   Consequently, there is no resultant wave. 



95. Since they oscillate out of phase, then their waves will cancel (producing a node) at a 
point exactly midway between them (the midpoint of the system, where we choose x = 0). 
We note that Figure 17-14, and the n = 3 case of Figure 17-15(a) have this property (of a 
node at the midpoint). The distance Δx between nodes is λ/2, where λ = v/f and f = 300 
Hz and v = 343 m/s. Thus, Δx = v/2f = 0.572 m.  

Therefore, nodes are found at the following positions: 

(0.572m),  0, 1, 2,...x n x n n= Δ = = ± ±

(a)  The shortest distance from the midpoint where nodes are found is Δx =0.

(b) The second shortest distance from the midpoint where nodes are found is Δx=0.572 m.  

(c) The third shortest distance from the midpoint where nodes are found is 2Δx =1.14 m. 



96. (a) With f = 686 Hz and v = 343 m/s, then the “separation between adjacent 
wavefronts” is λ = v/f = 0.50 m. 

(b) This is one of the effects which are part of the Doppler phenomena.  Here, the 
wavelength shift (relative to its “true” value in part (a)) equals the source speed sv  (with 
appropriate ± sign) relative to the speed of sound v :

sv
v

λ
λ

Δ = ± .

In front of the source, the shift in wavelength is  –(0.50 m)(110 m/s)/(343 m/s) = –0.16 m, 
and the wavefront separation is 0.50 m  – 0.16 m = 0.34 m.  

(c) Behind the source, the shift in wavelength is +(0.50 m)(110 m/s)/(343 m/s) = +0.16 m, 
and the wavefront separation is 0.50 m + 0.16 m = 0.66 m. 



97. We use I ∝ r–2 appropriate for an isotropic source. We have 

( )2

2
1 ,
2

r d

r D d

D dI
I D

=

= −

−
= =

where d = 50.0 m. We solve for  

( ) ( ) ( ): 2 / 2 1 2 50.0m / 2 1 171m.D D d= − = − =



(c) The surface area of a cylinder of “height” d is 2πrd, so the intensity of the surface 
wave is  

( )
( )

3 2

cylinder

0.20 /
25 10 W/m

2
K tPI

A rd
Δ

= = = ×
π

using d = 5.0 m, r = 200 × 103 m and the smaller value for K from part (a). Using instead 
the larger estimate for K, we obtain I = 58 kW/m2.

(d) Although several factors are involved in determining which seismic waves are most 
likely to be detected, we observe that on the basis of the above findings we should expect 
the more intense waves (the surface waves) to be more readily detected. 

98. (a) Using m = 7.3 × 107 kg, the initial gravitational potential energy is 
113.9 10  JU mgy= = × , where h = 550 m. Assuming this converts primarily into kinetic 

energy during the fall, then K = 3.9 × 1011 J just before impact with the ground. Using 
instead the mass estimate m = 1.7 × 108 kg, we arrive at K = 9.2 × 1011 J. 

(b) The process of converting this kinetic energy into other forms of energy (during the 
impact with the ground) is assumed to take Δt = 0.50 s (and in the average sense, we take 
the “power” P to be wave-energy/Δt). With 20% of the energy going into creating a 
seismic wave, the intensity of the body wave is estimated to be 

( )
( )

2
21

hemisphere 2

0.20 /
0.63W/m

4
K tPI

A r
Δ

= = =
π

using r = 200 × 103 m and the smaller value for K from part (a). Using instead the larger 
estimate for K, we obtain I = 1.5 W/m2.



99. (a) The period is the reciprocal of the frequency:

T = 1/f = 1/(90 Hz) = 1.1 × 10–2 s. 

(b) Using v = 343 m/s, we find λ = v/f = 3.8 m. 



100. (a) The problem asks for the source frequency f. We use Eq. 17–47 with great care 
(regarding its ± sign conventions). 

340 m/s 16 m/s'
340 m/s 40 m/s

f f −=
−

Therefore, with f ′ = 950 Hz, we obtain f = 880 Hz. 

(b) We now have 
340 m/s 16 m/s'
340 m/s 40 m/s

f f +=
+

so that with f = 880 Hz, we find f ′ = 824 Hz. 



where blood cos .xv v θ=  If we write the ratio of frequencies as R = (f + Δf)/f, then the 
solution of the above equation for the speed of the blood is 

( )
( )blood

1
0.90m/s

1 cos
R v

v
R

−
= =

+ θ

where v = 1540 m/s, θ = 20°, and R = 1 + 5495/5 × 106.

(c) We interpret the question as asking how Δf (still taken to be positive, since the 
detector is in the “forward” direction) changes as the detection angle θ changes. Since 
larger θ means smaller horizontal component of velocity vx then we expect Δf to decrease 
towards zero as θ is increased towards 90°. 

101. (a) The blood is moving towards the right (towards the detector), because the 
Doppler shift in frequency is an increase: Δf > 0. 

(b) The reception of the ultrasound by the blood and the subsequent remitting of the 
signal by the blood back toward the detector is a two-step process which may be 
compactly written as  

x

x

v vf f f
v v

++ Δ =
−



102. Pipe A (which can only support odd harmonics – see Eq. 17-41) has length LA.  Pipe 
B (which supports both odd and even harmonics [any value of n] – see Eq. 17-39) has 
length LB = 4LA . Taking ratios of these equations leads to the condition: 

n
2 B

  = ( )nodd A
    . 

Solving for nB we have nB = 2nodd.

(a) Thus, the smallest value of nB at which a harmonic frequency of B matches that of A
is nB = 2(1)=2.

(b) The second smallest value of nB at which a harmonic frequency of B matches that of 
A is nB = 2(3)=6. 

(c) The third smallest value of nB at which a harmonic frequency of B matches that of A
is nB = 2(5)=10. 



The graph has frequency in Hertz along the vertical axis and 1/L in inverse meters along 
the horizontal axis. The function found by the least squares fit procedure is f = 276(1/L) + 
0.037. We shall assume that this fits either the model of an open organ pipe 
(mathematically similar to a string fixed at both ends) or that of a pipe closed at one end. 

(a) In a tube with two open ends, f = v/2L. If the least-squares slope of 276 fits the first 
model, then a value of  

v = 2(276 m/s) = 553 m/s 25.5 10  m/s≈ ×
is implied. 

(b) In a tube with only one open end, f = v/4L, and we find v = 4(276 m/s) = 1106 m/s 
31.1 10  m/s≈ × which is more “in the ballpark” of the 1400 m/s value cited in the problem.  

(c) This suggests that the acoustic resonance involved in this situation is more closely 
related to the n = 1 case of Figure 17-15(b) than to Figure 17-14. 

103. The points and the least-squares fit is shown in the graph that follows.



104. (a) Since the source is moving toward the wall, the frequency of the sound as 
received at the wall is 

( ) 343m/s' 440 Hz 467 Hz.
343m/s 20.0m/sS

vf f
v v

= = =
− −

(b) Since the person is moving with a speed u toward the reflected sound with frequency
f ′, the frequency registered at the source is 

( ) 343m/s 20.0m/s' 467 Hz 494 Hz.
343m/sr

v uf f
v
+ += = =



105. Using Eq. 17-47 with great care (regarding its ± sign conventions), we have 

340 m/s 80.0 m/s(440 Hz) 400 Hz
340 m/s 54.0 m/s

f −′ = =
−

.



The displacement amplitude is proportional to the reciprocal of the distance from the 
source. We take the wave to be sinusoidal. It travels radially outward from the source, 
with points on a sphere of radius r in phase. If ω is the angular frequency and k is the 
angular wave number then the time dependence is sin(kr – ωt). Letting / 4 ,b P C= π  the 
displacement wave is then given by 

1( , ) sin( ) sin( ).
4

P bs r t kr t kr t
C r r

= − = −
π

ω ω

(b) Since s and r both have dimensions of length and the trigonometric function is 
dimensionless, the dimensions of b must be length squared. 

106. (a) Let P be the power output of the source. This is the rate at which energy crosses 
the surface of any sphere centered at the source and is therefore equal to the product of 
the intensity I at the sphere surface and the area of the sphere. For a sphere of radius r, P
= 4πr2 I and I = P/4πr2. The intensity is proportional to the square of the displacement 
amplitude sm. If we write 2

mI Cs= , where C is a constant of proportionality, then 
2 2/ 4mCs P r= π . Thus,

( )2/ 4 / 4 (1/ ).ms P r C P C r= π = π



107. (a) The problem is asking at how many angles will there be “loud” resultant waves, 
and at how many will there be “quiet” ones?  We consider the resultant wave (at large 
distance from the origin) along the +x axis; we note that the path-length difference (for 
the waves traveling from their respective sources) divided by wavelength gives the 
(dimensionless) value n = 3.2, implying a sort of intermediate condition between 
constructive interference (which would follow if, say, n = 3) and destructive interference 
(such as the n = 3.5 situation found in the solution to the previous problem) between the 
waves.  To distinguish this resultant along the +x axis from the similar one along the –x
axis, we label one with n = +3.2 and the other n = –3.2.  This labeling facilitates the 
complete enumeration of the loud directions in the upper-half plane: n = –3, –2, –1,  0, +1,
+2, +3.  Counting also the “other” –3, –2, –1,  0, +1, +2, +3 values for the lower-half
plane, then we conclude there are a total of  7 + 7 = 14  “loud”  directions. 

(b) The labeling also helps us enumerate the quiet directions.  In the upper-half plane we 
find: n =  –2.5, –1.5, –0.5, +0.5, +1.5, +2.5.  This is duplicated in the lower half plane, so 
the total number of quiet directions is 6 + 6 = 12. 



108. The source being isotropic means Asphere = 4πr2 is used in the intensity definition I = 
P/A. Since intensity is proportional to the square of the amplitude (see Eq. 17–27), this 
further implies 

2 22
22 2 1

2
1 1 1 2

/ 4
/ 4

m

m

sI P r r
I s P r r

π= = =
π

or sm2/sm1 = r1/r2.

(a) I = P/4πr2 = (10 W)/4π(3.0 m)2 = 0.088 W/m2.

(b) Using the notation A instead of sm for the amplitude, we find 

4

3

3.0m 0.75
4.0 m

A
A

= = .



109. (a) In regions where the speed is constant, it is equal to distance divided by time. 
Thus, we conclude that the time difference is 

L d d Lt
V V V V
−Δ = + −

− Δ

where the first term is the travel time through bone and rock and the last term is the 
expected travel time purely through rock. Solving for d and simplifying, we obtain 

( ) 2

.
V V V Vd t t

V V
− Δ

= Δ ≈ Δ
Δ Δ

(b) If we estimate d ≈ 10 cm (as the lower limit of a range that goes up to a diameter of 
20 cm), then the above expression (with the numerical values given in the problem) leads 
to Δt = 0.8 μs (as the lower limit of a range that goes up to a time difference of 1.6 μs).



110. (a) We expect the center of the star to be a displacement node. The star has spherical 
symmetry and the waves are spherical. If matter at the center moved it would move 
equally in all directions and this is not possible. 

(b) We assume the oscillation is at the lowest resonance frequency. Then, exactly one-
fourth of a wavelength fits the star radius. If λ is the wavelength and R is the star radius 
then λ = 4R. The frequency is f = v/λ = v/4R, where v is the speed of sound in the star. 
The period is T = 1/f = 4R/v.

(c) The speed of sound is /v B= ρ , where B is the bulk modulus and ρ  is the density 
of stellar material. The radius is R = 9.0 × 10–3Rs, where Rs is the radius of the Sun (6.96 
× 108 m). Thus 

10 3
3 8

22

1.0 10 kg/m4 4(9.0 10 )(6.96 10 m) 22 s.
1.33 10 Pa

T R
B
ρ − ×= = × × =

×



111. We find the difference in the two applications of the Doppler formula: 

2 1
340 m/s 25 m/s 340 m/s 25 m/s37 Hz
340 m/s 15 m/s 340 m/s 15 m/s 340 m/s 15 m/s

f f f f+− = = − =
− − −

which leads to 24.8 10  Hzf = × .



/     
/

f f
f f

λ τ μ τ
λ τ μ τ
′ ′ ′ ′

= =

where we are making an assumption that the mass-per-unit-length of the string does not 
change significantly. Thus, with τ ′ =1.2τ, we have / 440 1.2 ,f ′ = which 
gives 482 Hzf ′ = .

(b) In this case, neither tension nor mass-per-unit-length change, so the wave speed v is 
unchanged. Hence, using Eq. 17–38 with 1n = ,

( ) ( )2 2f f f L f L′ ′ ′ ′λ = λ =

Since 2
3L L′ = , we obtain ( )3

2 440 660 Hzf ′ = = .

112. (a) We proceed by dividing the (velocity) equation involving the new (fundamental) 
frequency f ′ by the equation when the frequency f is 440 Hz to obtain 




